

Содержание

KG/KGW Top

Co	держаниестр.	
1.	Сертификаты	
2.	Типоразмеры	
3.	Описание установки6-15	
4.	Секции / Размеры	
5.	Bec	a)
6.	Погодозащищенное исполнение	Ě
7.	Присоединительные размеры	cal
8.	Электродвигатель / эл. подключение	Описание
9.	Карманный фильтр	0
10.	Секция орошения	
	Мультифункциональные элементы 26	
12.	KG Top 2127-36	21
12	KG Top 43	43
13.	NG 10p 4551-40	43
11	KG Top 64	64
14.	NG 10p 0447-30	04
15	KG Top 9657-66	96
10.	ТО тор эо	
16	KG Top 13067-76	130
10.	1.0 Top 100	100
17	KG Top 17077-86	170
17.	ΤΙ-ου	170
10	KG Top 21087-96	210
10.	ΝΟ 10μ 210	210
10	KG Top 270	270
19.	NG 10β 27097-100	210
	vo =	200
20.	KG Top 320	320
21.	KG Top 380117-126	380
22.	KG Top 450	450
	121 133	100
	VO =	540
23.	KG Top 510	510
24.	KG Top 600	600
25.	KG Top 680	680
26	KG Top 850	850
_0.	107 170	
o-	WO T 1000	1000
27.	KG Top 1000	1000
28.	I-d диаграмма Молье	I-d диагр.

THE INTERNATIONAL CERTIFICATION NETWORK

CERTIFICATE

DQS GmbH Deutsche Gesellschaft zur Zertifizierung von Managementsystemen

CE

Установки протестированы согласно действующим правовым нормам-ЕС.

Wolf GmbH

DIN / EN 1886

VDI 6022

EG

Calat nacs

Требования качества к облицовке установки

VDI-нормы и правила гигиенического и технического исполнения установки

DIN 1946 T4

wall-mounted gas biomass bollers, solar technology nearing appliances
Гигиенические требования к установке для использования в медицинских
учреждениях, чистых помещениях. Универсальны для лабораторий,
фармацевтической промышленности, а также на производстве электронных
приборов, и т.д. *

VDI 3803

Нормы по энергосбережению.

TUV GS тест на надежность

Установки соответствуют требованиям технической надежности и качества.

of the following standard

Eurovent

ISO 9001: 2000

Член европейского сообщества Eurovent, который регулярно тестирует и сертифицирует установки в непосредственном институте тестирования *

Frankfurt am Main

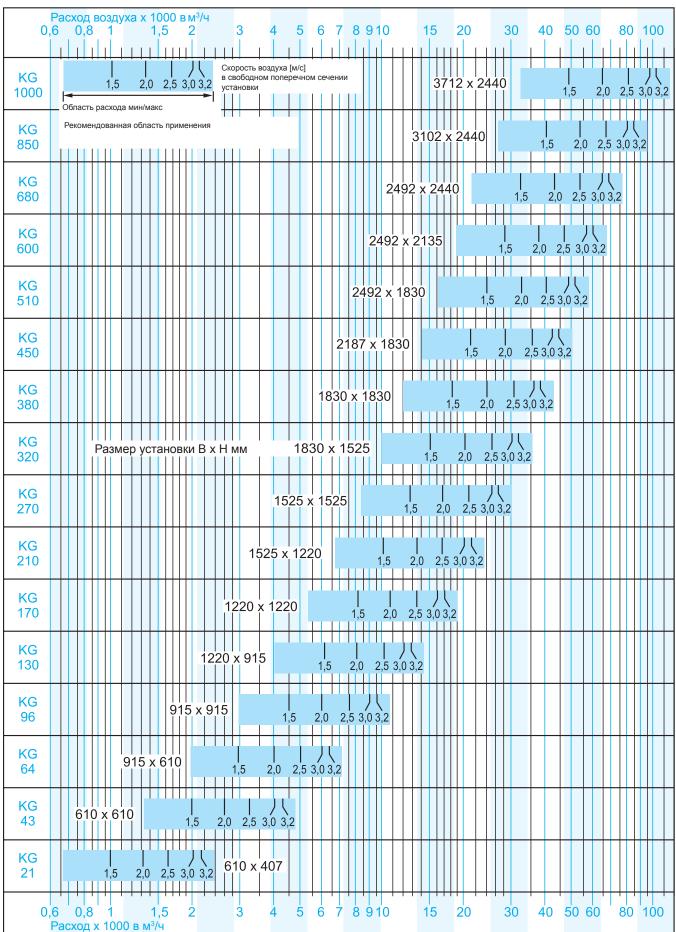
Z000-00-19

Atex

Установки согласно правовым нормам 94/9/EG (Atex 95) для прменения во взрывозащищенных помещениях. *

* по запросу

Dr. Fabio Roversi



Описание

Типоразмеры

KG/KGW Top

Классификация установки по EN 1886

Центральные кондиционеры модельного ряда KG Top / KGW Top относятся к классификации установок "негорючие" класса A1, согласно DIN 4102. Все установки могут быть выполнены согласно гигиеническим нормам VDI 6022.

Все установки серийно протестированы на высокое напряжение, имеют обозначение GS (TUV-сертификация) и сертификат-CE.

Благодаря особой конструкции корпуса (система Фарадея), гарантирована электромагнитная совместимость.

Класс теплопередачи = T2 Класс тепловых мостов = TB3

Перетечки через фильтр - байпас Ј 0,4%

Герметичность облицовки Класс L2 (B) Механическая прочность Класс D1

Затухания De через облицовку

Гц	125	250	500	1000	2000	4000	8000	Сумм.
дБ	17	26	31	34	36	38	44	30,7

Технические данные

Изоляция: толщина

50 мм

Класс материала (по DIN 4102) Теплопроводность A1 (негорючее) 0,04 Вт/мК

Облицовка: коэффициент теплопередачи 0,6 Вт/м²К

Коэффициент звукоизоляции 41-43 дБ

(согл. DIN/EN ISO 717 часть 1)

Исполнение

Кондиционер производится в виде модульной конструкции, что представляет собой самонесущие, полностью оцинкованные секции, при необходимости легко отсоединяемые друг от друга, а также полностью разборные на отдельные составляющие. Компоненты возможно использовать повторно (Recycling). Полная оцинковка, согласно EN 10142 и EN 10143. Эластичное уплотнение между отдельными элементами, подходящее для избыточного давления и разряжения, гарантирует высокую герметичность установки.

Все уплотнения с закрытыми порами, не содержат силикона, неизнашиваемые и прошедшие дезинфекционную обработку.

Конструкция рамы KG 21 - 380: 50x50x1,5 мм KG 450 - 1000: 76x76x2 мм Самонесущая рамная конструкция, с рамой профиля двойной квадрат, с винтовыми соединениями и угловыми элементами, отлитыми под давлением.

Установка устойчива без рамы основания.

Рамы профилированы и оцинкованы, согласно EN 10142 и EN 10143

Легко разбираемый кожух секций, собран на литых угловых элементах и горизонтальных или вертикальных демонтируемых сэндвич панелях.

Облицовка установки

Толщина облицовки 50 мм, состоит из термически разделенной внутренней и внешней панели из оцинкованной стали, согласно EN 10142 и EN 10143 (начиная с KG 450, толщина нижней и верхней панелей 76 мм). Звуко- и теплоизоляция выполнена из высококачественной негорючей минеральной ваты, строительный материал A1, согласно DIN 4102. Нижние панели ровные, произведены из гигиенически чистого материала, устанавливаются без щелей.

Панели имеют ровную поверхность и легко чистятся, собираются на раме резьбовыми элементами и легко снимаются.

- панели внутри и/или снаружи из нержавеющей стали
- порошковая покраска, согласно RAL (толщина мин. 60 мкм)

KG/KGW Top

Погодозащищенная установка

Толщина облицовки 50 мм, состоит из термически разделенной внутренней и внешней панелей из оцинкованной стали, согласно EN 10142 и EN 10143 (начиная с KG 450, толщина изоляции нижней и верхней панелей 76 мм). Звуко- и теплоизоляция выполнена из высококачественной негорючей минеральной ваты, строительный материал A1, согласно DIN 4102. Нижние панели ровные, произведены из гигиенически чистого материала, устанавливаются без щелей. Панели имеют ровную поверхность и легко чистятся, собираются на раме резьбовыми элементами и легко снимаются.

. Легкая крыша с ребрами жесткости из оцинкованной стали для полного стока воды, со слезником для стока капель и выступом 50 мм.

По запросу для KGW

- панели внутри и/или снаружи из нержавеющей стали
- порошковая покраска, согласно RAL (толщина мин. 60 мкм)

Рама-основание от 200 до 500 мм высотой. Исполнение с изоляцией или без нее.

Всасывающий/вытяжной козырек с водосточным желобом со всех сторон для стока воды, оборудован защитной решеткой.

Секция для всасывания воздуха с коррозионностойким изолированным поддоном конденсата с наклоном со всех сторон, боковым патрубком 1 1/4" (1 1/2", начиная с KG /KGW Top 450) для непрерывного и полного отвода конденсата.

Погодозащищенная консоль для внешней арматуры и труб.

Ревизионная дверь

Толщина ревизионной двери 50 мм. Ревизионная дверь с внешними петлями. Двери открываются при помощи инструмента и интегрированных ручек, закрываются с регулируемым прижатием благодаря винтовой задвижке.

Уплотнение выполнено специальным профилем с высокоэффективной двойной кромкой для избыточного давления и разряжения.

Ревизионная дверь состоит из термически разделенных внутренних и внешних стенок из оцикованной стали.

Высококачественная изоляция из минеральной ваты, расположенная между внутренним и внешним стенками, класс A1 (негорючая), согласно DIN 4102.

Термические и акустические качества аналогично облицовочной панели.

Двери на стороне избыточного давления оборудованы стопором для сброса воздуха.

По запросу

- фиксирующий амортизатор двери
- смотровое отверстие диаметром мин. 150 мм в двухстенном термически разделенном исполнении
- запирающийся снаружи рычажный замок или сквозной рычаг, открывающийся изнутри и снаружи

Секция вентилятора

Вентилятор и мотор монтируются на устойчивой раме, снабженной виброгасителем.

С радиальным вентилятором двустороннего всасывания, вперед или назад загнутыми лопатками.

Устойчивое расположение акустически протестированного прецизионного шарикоподшипника (смазка - литиевый жир), рабочее колесо статически и динамически сбалансировано согласно VDI 2060.

Легкий демонтаж корпуса для ремонта и сервисного обслуживания.

Приводится в действие электродвигателем 400 B/50 Гц, класс B3, термический класс F, степень защиты IP 55, TUV GS протестировано, подключенный электродвигатель протестирован на высокое напряжение и пробой на землю.

Передача энергии при помощи высококачественных клиновых ремней и шкивов. Шкив клинового ремня фиксируется зажимной втулкой, согласно DIN 6885.

Начиная с KG /KGW Тор 380 защитная решетка двери открывается только при помощи инструмента, или устанавливается защитная решетка ремня, согласно EN 1886.

Вентилятор и мотор закреплены на виброоснованиях, в стандарте заземлены на корпус.

Гибкая вставка между улиткой и корпусом.

KG/KGW Top

По запросу

- Плоскоременная передача с натяжением на салазках
- Улитка вентилятора с ревизионными отверстиями
- Улитка вентилятора с адаптером для слива конденсата
- Защитная решетка двери или защита ремня до KG/KGW 320
- Вентилятор с рабочим колесом с прямым приводом
- Односкоростной электродвигатель класса EFF1
- Многоскоростной электродвигатель
- Электродвигатель во взрывозащищенном исполнении (согласно ATEX 100)
- Электродвигатель с регулируемой скоростью вращения
- Защита электродвигателя при помощи термисторов или термоконтактов
- Сервисный выключатель, смонтирован и подключен

Прямоприводной вентилятор

Вентилятор с рабочим колесом с прямым приводом с назад загнутыми лопатками, мотор смонтирован непосредственно на валу вентилятора. Несущая конструкция из оцинкованной стали. Закреплено на С-образном профиле на виброоснованиях. Сварное стальное рабочее колесо, с защитой наружных поверхностей порошковым покрытием.

Рабочее колесо баллансируется с втудкой по классу G 2,5, согласно ISO 1940 T1. Стреловидное всасывающее сопло из оцинкованной стали для оптимального забора воздуха. IEC-стандартный эелктродвигатель, 400 B, 50 Гц, защита мотора - термисторы, тепловой класс F. Макс.температура приточного воздуха 60 °C.

Специальное исполнение

- Сварное алюминиевое рабочее колесо.
- Мотор макс. 7,5 кВт со смонтированным частотным преобразователем (макс. температура воздуха 35°С)
- Прямоприводной вентилятор во взрывозащищенном исполнении, согласно ATEX 100 (электропроводящий лак, рабочее колесо с медным всасывающим соплом на входе и мотором, согласно требованиям ATEX)

Принадлежности для бесступенчатого регулятора скорости, по запросу:

- Датчик давления или расхода возхдуха
- Управляющий модуль электропитания для датчика давления с регулируемым усилителем для преобразователя частот, электронная пограничная частота (U_{верхн} <1000B, du/dt<500 B/мкс).

Частотный преобразователь (управляется микропроцессором)

Для регулировки скорости вращения мотора вентилятора (от 5 до 70Гц). Устранение помех, согласно EN 55011, благодаря фильтру для устранения помех. Кабель между мотором и частотным преобразователем экранированный. Интегрированная защита мотора встроенным температурным датчиком, поключен на заводе.

Преобразователь частоты для бесступенчатого регулирования числа оборотов асинхронного трехфазного электродвигателя, сконструирован специально для машин, работающих с газовыми и жидкими средами.

- без снижения мощности при номинальном числе оборотов мотора при непосредственном сетевом питании
- интегрированный фильтр устранения помех для соблюдения пограничной величины, согласно EN 55011
- с автоматической оптимизацией использования электроэнергии для максимального кпд мотора в режиме частичной нагрузки
- с защитой от короткого замыкания, заземлен
- допустима работа нескольких моторов
- рабочие температуры : 40°C для степеней защиты IP 00/20 и IP 54

Панель управления с пояснительным текстом дисплея для ввода в эксплуатацию и изображения всех необходимых данных (при IP 20 установки съемные с функией копирования), имеет клавиши старт, стоп, ручная и автоматическая работа.

KG/KGW Top

Стандартные функции:

Автоматический адаптация под мотор, автоматический ускоритель и замедлитель хода, ограничитель минимального и максимального числа оборотов, выбор числа оборотов, экстренная остановка, синхронизация уже запущенного мотора, использование термистора мотора, контроллер клинового ремня, подсчет рабочих часов, датчик неполадки, PID-регулятор.

Входы:

- 3 аналоговых входа, маштабируемые и инвертируемые для внешней заданной величины с обратной связью с фактической величиной
- 1 вход 0 20 мА, 2 входа напряжение 0 10 В, также и для подключения термистора мотора
- 8 цифровых входов с плавающим значением, программируется для импульсной заданной или фактической величины (последовательно) / число оборотов до / число оборотов с / выбор числа оборотов/ старт/ стоп/ реверс числа оборотов / сообщение об ошибке/ ручной- 0 автоматический

внутреннее напряжение: 10 В постоянного тока, 17 мА для потенциометра 1кОм и 24 В постоянного тока, 200 мА для цифровых входов.

Выходы:

- 2 комбинированных аналогово-/цифровых выхода: 0/4 20 мА или 24 В пост. тока/макс. 40 мА
- 1 плавающий выход (переходной): 240V AC / макс. 2A, 24V DC / мин. 10мА или 24В пост. тока / мин. 100 мА
- 1 потенциально свободный контакт (нормальнооткрытый): 50 B / макс. 1 A, 75 B пост. тока / макс. 1 A

Интерфейс:

- RS 485 2-х проводной интерфейс для передачи настроек, контрольных сигналов и информации о состоянии
- синусообразный фильтр (LC фильтр мотора)
- сервисный выключатель для управления байпассом (при 50 Гц возможен аварийный режим)
- установочный комплект для монтажа в соответствии с IP 54 для панели управления во внешнем корпусе

KG/KGW Top

Секция нагрева

допустимое рабочее давление 16 бар давление испытания 30 бар

По запросу

С выдвижным медно-алюминиевым нагревателем, трубки из меди с прессованными, комбинированными и профилированными высококачественными ребрами, коллектор стальной, установленный на оцинкованной стальной раме. Для работы на горячей, перегретой воде или паре. Соединение дюймовой резьбой или фланцем/контрфланцем.

- воздухонагреватель из оцинкованной стали
- медно-алюминиевый нагреватель, полностью покрашенный
- нагреватель медно-медный
- медный коллектор
- нагреватель из нержавеющей стали
- адаптеры для подсоединения сливного и воздушного вентиля
- выдвижная рама для термостата защиты от замерзания с ручкой

Секция нагрева с выдвижным электрическим нагревателем

- для 3 х 400 В, в собственном корпусе
- сетка нагревателя с низкой температурой наружных поверхностей
- клеммник со встроенным и подключенным температурным датчиком, дополнительно с ограничителем температуры

Секция охлаждения

допустимое рабочее давление 16 бар давление испытания 30 бар С выдвижным медно-алюминиевым охладителем, трубки из меди с запрессованными, комбинированными и профилированными высококачественными ребрами, медный коллектор встроен в оцинкованную стальную раму.

Соединения дюймовой резьбой. Проход патрубков через облицовку уплотнен. Стальная съемная рама, выдвижной пластиковый каплеотделитель.

Коррозионностойкий изолированный стальной поддон конденсата с уклоном со всех сторон, направленным к сливному патрубку 1 1/4" (1 1/2", начиная с KG /KGW Тор 450) для непрерывного и полного отвода конденсата.

По запросу

- воздухоохладитель из оцинокванной стали
- медно-алюминиевый воздухоохладитель, полностью покрашенный
- воздухоохладитель медно-медный
- воздухоохладитель из нержавеющей стали
- адаптеры для подсоединения сливного и воздушного вентиля
- рама воздухоохладителя из нержавеющей стали
- поддон для конденсата из нержавеющей стали

Секция охлаждения (испаритель)

С выдвижным медно-алюминиевым воздухоохладителем, для прямого испарения с распределительным патрубком для распределенной подачи фреона. Медные трубки с прессованными, комбинированными и профилированными высококачественными ребрами, медный коллектор, встроенный в стальную оцинкованную раму.

Проход патрубков через облицовку уплотнен.

Выдвижной пластиковый каплеотделитель.

Коррозионностойкий изолированный стальной поддон конденсата с уклоном со всех сторон, направленным к сливному патрубку 1 1/4" (1 1/2", начиная с KG /KGW Тор 450) для непрерывного и полного отвода конденсата.

- прямое испарение с несколькими контурами
- контур теплового насоса

KG/KGW Top

Секция карманного фильтра KG/KGW Top 21 - 600

Карманный фильтр класса G4 из полиэфирного волокна, F5, F7, F9 из стекловолокна, фиксируется при помощи быстросъемного приспособления, снимается без инструментов, выдвигается в сторону . Термостойкий - до 90° С и 100% отн. влажности.

Рама фильтра прижимается по периметру и не имеет щелей, поперечное сечение установки оптимизировано под размеры фильтров и полностью используется. Высокая прижимная сила быстросъемного приспособления.

KG/KGW Top 680 - 1000

Карманный фильтр класса G4 из полиэфирного волокна, F5, F7, F9 из стекловолокна, фиксируется при помощи быстросъемного приспособления, доступ со стороны неотфильтрованного воздуха. Термостойкий до 90°С и 100% отн. влажности. Рама фильтра прижимается по периметру и не имеет щелей, поперечное сечение установки оптимизировано под размеры фильтров и полностью используется. Высокая прижимная сила благодаря давлению воздуха.

По запросу

- биостатический фильтр
- угольный фильтр
- металлический фильтр
- НЕРА фильтр для взвешенных частиц
- поддон для карманного фильтра (для KGW)

Короткая секция карманного фильтра KG/KGW Top 21 - 600

Карманный фильтр класса G4 из полиэфирного волокна, F5, F7 из стекловолокна, фиксируется при помощи быстросъемного приспособления, снимается без инструментов, выдвигается в сторону. Термостойкий до 90°С и 100% отн. влажности. Рама фильтра прижимается по периметру и не имеет щелей, поперечное сечение установки оптимизировано под размеры фильтров и полностью используется. Высокая прижимная сила быстросъемного приспособления.

KG/KGW Top 680 - 1000

Карманный фильтр класса G4 из полиэфирного волокна, F5, F7 из стекловолокна, фиксируется при помощи быстросъемного приспособления, снимается без инструментов, выдвигается в сторону. Термостойкий до 90°С и 100% отн. влажности. Рама фильтра прижимается по периметру и не имеет щелей, поперечное сечение установки оптимизировано под размеры фильтров и полностью используется. Высокая прижимная сила благодаря давлению воздуха.

Короткая секция фильтра KG/KGW Top 21-270

Рама фильтра с регенерируемым матовым фильтром класса G4 из полиэфирного волокна, рама фильтра выдвигается в сторону, ревизионная дверь с обслуживаемой стороны, открывается при помощи инструмента и встроенной ручки.

Секция смешения / секция фильтра для KG/KGW Top 21 - 450

Выдвижная рама фильтра с регенерируемым матовым фильтром класса G4 из полиэфирного волокна, рама фильтра выдвигается в сторону, ревизионная дверь со стороны обслуживания, открывается при помощи инструмента и встроенной ручки.

- жалюзийный клапан, согласно DIN EN 1751, с жалюзийными пластинами, вращающимися в противоходе, кромки пластин уплотнены, класс утечек 2, макс. коэффициент утечек 40 л/м²/с, подходит для ручного управления или приводом
- гибкая вставка

KG/KGW Top

Секция смешения

По запросу

Секция шумоглушителя

По запросу

Секция оросительной камеры

эокция шумоглушиголя

Жалюзийный клапан, согласно DIN EN 1751, с полыми жалюзийными пластинами, вращающимися в противоходе, класс утечек 1, макс. коэффициент утечек 200 л/м²/с, рама из оцинкованной стали, подходит для ручного управления или приводом, наружное расположение клапана. Рециркуляционный клапан подходит для параметров давления рециркуляционного воздуха.

- жалюзийный клапан, согласно DIN EN 1751, с жалюзийными пластинами, вращающимися в противоходе, кромки пластин уплотнены, класс утечек 2, макс. коэффициент утечек 40 л/м²/с, подходит для ручного управления или приводом
- жалюзийный клапан, согласно DIN 1946 T4 с жалюзийными пластинами, вращающимися в противоходе, кромки пластин уплотнены, класс утечек 2, макс. коэффициент утечек 10 м³/м²/ч, подходит для ручного управления или приводом
- ревизионная дверь

Пластины из минерального волокна (протестировано DIN EN ISO 7235), класс строительных материалов A1 (негорючий, согл. DIN 4102), расположен в оцинкованной стальной раме, влагостойкий, износостойкий при скоростях воздуха до 20 м/с, возможна чистка внешних поверхностей.

- с покрытием перфорированными панелями
- с покрытием пленкой из стекловолокна
- демонтируемые сбоку кулисы
- кулисы с оптимизированными торцевыми поверхностями

Корпус из армированного стекловолокном пластика с толщиной стенки 6-8 мм и ламинированными усиленными элементами для стабилизации секции при нагрузках высоким давлением, цвет RAL 7030.

Оборудована поплавковым клапаном 3/4", с седлом из нержавеющей стали и пластиковым поплавком для работы на умягченной воде.

Пластиковые сливные и переливные патрубки; самоочищающиеся, распыляющие против направления воздуха форсунки, состоит из распределительной трубки с вертикальными трубками форсунок и форсунками из полипропилена с быстросъемным клипсовым соединением, с крышкой из нержавеющией стали, форсунки самоочищающиеся с защитой от засорения.

Каплеотделитель и выравниватель потока из полипропилена, полностью демонтируемые и термостойкие.

Легкое основание поддона с уклоном со всех сторон к сливному патрубку, для полного стекания конденсата, возможна легкая очистка.

Все подсоединения расположены со стороны обслуживания. Ревизионная дверь с двойной облицовкой с изоляцией и смотровое окно с двойным остеклением.

Корпус насоса из нержавеющей стали, мотор насоса с датчиком температуры, тепловой класс CL F, класс защиты IP 55, подходит для работы с регулированием числа оборотов. Насос полностью подключен по воде. Оборудован защитой от сухого хода.

Для KGW предусмотрена 50мм изоляция, класс строительных материалов A1, согл. DIN 4102,

Сливное и переливное устройсто из поливинилхлорида с расположенным внутри сифоном.

По запросу

- Освещение с защитой от брызг (прозрачный стеклопластик, 230 В / 60 Вт), термометр, манометр, устройство удаления шлама, затемнение для смотрового окна, автоматика обессоливания, ультрафиолетовое обеззараживание воды
- 50мм изоляция, класс строительных материалов A1, согл.DIN 4102
- исполнение согл. гигиеническим нормам VDI 6022
- исполнение согл. гигиеническим нормам DIN 1946 T4

Пустая секция пароувлажнителя

Секция увлажнения с коррозионностойким изолированным аллюминиевым поддоном конденсата с уклоном со всех сторон к сливному патрубку 1 1/4"(1 1/2" начиная с KG/KGW Тор 450), предусмотренному в раме установки для постоянного полного отвода конденсата.

- Смотровое отверстие с двойным остеклением, диаметром мин. 150 мм
- Освещение 24 В

KG/KGW Top

Пустая секция увлажнителя

По запросу

Секция увлажнителя с коррозионностойким изолированным аллюминиевым поддоном конденсата с уклоном со всех сторон к сливному патрубку1 1/4"(1 1/2" начиная с KG /KGW Тор 450), предусмотренному в раме установки, для постоянного и полного отвода конденсата.

- Смотровое отверстие с двойным остеклением, диаметром мин. 150 мм
- Освещение 24 В

Рекуперация тепла

Перекрестноточный рекуператор KGX

Перекрестноточный рекуператор KGX со встроенным байпасом горизонтального исполнения (потоки воздуха горизонтально/горизонтально) или вертикального (потоки воздуха горизонтально/вертикально).

Рекуперативное использование тепла и холода, согл. VDI 2071, при помощи коррозионностойких алюминиевых пластин.

Профилированные теплообменные пластины выполнены из специального алюминия, уплотненные эластичным термостойким герметиком, закреплены между собой фиксирующими зажимами.

Герметичный клапан байпаса, класс утечек 2 (согл.DIN EN 1751) со стороны наружного воздуха, с жалюзийными пластинами, работающими в противоходе для регулирования мощности рекуперации и защиты от замерзания.

Коррозионностойкий изолированный аллюминиевый поддон конденсата с уклоном со всех сторон к сливному патрубку 1 1/4"(1 1/2" начиная с KG /KGW Тор 450), предусмотренному в раме установки, для постоянного и полного отвода конденсата.

Опционально: Поддон из нержавеющей стали, материал Nr. 1.4301.

Как правило при скорости потока больше 2,0 м/с и влажности вытяжного воздуха больше 50 % устанавливается каплеотделитель.

По запросу

- сифон
- пластины окрашены с обеих сторон
- при исполнении с байпасом встроенный рециркуляционный клапан
- начиная с КG Тор 170 до 1000, теплообменник в разоборном исполнении для более легкого монтажа

Перекрестноточный рекуператор KGXD

Перекрестноточный рекуператор KGXD со встроенным байпасом горизонтального исполнения (потоки воздуха горизонтально/горизонтально) или вертикального (потоки воздуха диагонально).

Рекуперативное использование тепла и холода, согл. VDI 2071, при помощи коррозионностойких алюминиевых пластин.

Профилированные теплообменные пластины выполнены из специального алюминия, уплотненные эластичным термостойким герметиком, закреплены между собой фиксирующими зажимами.

Герметичный клапан байпаса, класс утечек 2 (согл. DIN EN 1751) со стороны наружного воздуха, с жалюзийными пластинами, работающими в противоходе для регулирования мощности рекуперации и защиты от замерзания.

Коррозионностойкий изолированный аллюминиевый поддон конденсата с уклоном со всех сторон к сливному патрубку 1 1/4"(1 1/2" начиная с KG /KGW Тор 450), предусмотренному в раме установки, для постоянного и полного отвода конденсата.

Опционально: Поддон из нержавеющей стали, материал Nr. 1.4301.

Как правило при скорости потока больше 2,0 м/с и влажности вытяжного воздуха больше 50 % устанавливается каплеотделитель.

- сифон
- пластины окрашены с обеих сторон
- при исполнении с байпасом встроенный рециркуляционный клапан
- начиная с КG Тор 170 до 1000, теплообменник в разоборном исполнении для более легкого мотнажа

KG/KGW Top

Рекуператор с промежуточным теплоносителем тип KVS

допустимое рабочее давление 16 бар давление испытания 30 бар

Для рекуперации тепла вытяжного воздуха Исполнение облицовки как у кондиционера.

Секция нагрева

С выдвижным медно-алюминиевым нагревателем, трубки из меди с прессованными, комбинированными и профилированными высококачественными ребрами, коллектор стальной, встроенный в оцинкованную стальную раму для нагрева. Рабочая жидкость - водногликолевая смесь. Соединение дюймовой резьбой или фланцем/контрфланцем с резиновым кольцевым уплотнителем.

Секция охлаждения

С выдвижным медно-алюминиевым охладителем, трубки из меди с запрессованными, комбинированными и профилированными высококачественными ребрами, медный коллектор встроен в оцинкованную стальную раму. Рабочая жидкость - водногликолевая смесь.

Подсоединение дюймовой резьбой или фланцем/контрфланцем с резиновым кольцевым уплотнителем. Проход патрубков через облицовку уплотнен. Стальная съемная рама, выдвижной каплеотделитель из полипропилена.

Коррозионностойкий изолированный стальной поддон конденсата с уклоном со всех сторон, направленным к сливному патрубку со стороны рамы установки для непрерывного и полного отвода конденсата.

По запросу

- Подсоединительные аксессуары, включая расширительный бак, сливной и заправочный вентили, 2 муфтовые задвижки, предохранительный вентиль с манометром, поставляются отдельно
- Подсоединительные аксессуары, включая расширительный бак, сливной и заправочный вентили, 2 муфтовые задвижки, предохранительный вентиль с манометром, поставляются смонтрованными
- Поддон конденсата из нержавеющей стали

Ротационный рекуператор тип RWT

Ротор для оптимального использования явной тепловой энергии воздуха. Вертикальное или горизонтальное положение, прочная рамная конструкция. Низкий вес и легкая доступность всех компонентов установки.

Материал ротора из коррозионностойкого алюминиевого сплава, с волнистыми и ровными слоями для ламинарного потока воздуха. Начиная с размеров корпуса ротора больше чем 2200 мм, рама и ротор поставляются отдельно, сборка на месте.

Герметизация ротора по периметру сменным уплотнением.

Работа ротора осуществляется благодаря бесступенчатому мотору с регулируемым числом оборотов, редуктору и клиноременной передаче.

Энтальпийнный ротор для оптимального использования явной и скрытой тепловой энергии воздуха. Вертикальное и горизонтальное расположение, прочная рамная конструкция. Низкий вес и легкая доступность всех компонентов установки.

Материал ротора из коррозионностойкого алюминиевого сплава с гигроскопической внешней поверхностью для передачи влаги, с волнистыми и ровными слоями для ламинарного потока воздуха. Начиная с размеров кожуха больше чем 2200 мм, рама и ротор поставляются отдельно, сборка на месте.

Герметизация ротора по периметру сменным уплотнением.

Работа ротора осуществляется благодаря бесступенчатому мотору с регулируемым числом оборотов, редуктору и клиноременной передаче.

По желанию

- Регулятор ротора KR4 или KR7
- Контроль ротора
- Поддон для конденсата

KG/KGW Top

Принадлежности установки

Рама-основание установки из оцинкованной стали, поставляется смонтированной или отдельно. Высота от 200 до 500 мм. По желанию может быть изолированной. Альтернатива - рама-основание установки для внутреннего монтажа. Квадратная труба из оцинкованного профиля 60x60x2, стандартно ножки монтируются на углах рамы, с поставляемыми отдельно амортизационными вставками для отсутствия передачи вибраций между установкой и фундаментом.

По запросу

- Ножки, регулируемые по высоте, для корректировки неровного фундамента

Жалюзийный клапан, согласно DIN EN 1751, с жалюзийными пластинами, вращающимися в противоходе, класс утечек 1, макс. коэффициент утечек 200 л/м²/с, рама из оцинкованной стали, подходит для ручного управления или приводом

Жалюзийный клапан, согласно DIN EN 1751, с жалюзийными пластинами, вращающимися в противоходе, кромки пластин уплотнены, класс утечек 2, макс.. коэффициент утечек 40 л/м²/с, подходит для ручного управления или приводом.

Жалюзийный клапан, согл. DIN 1946 Т4, с жалюзийными пластинами, вращающимися в противоходе, кромки пластин уплотнены, коэффициент утечек 10 м³/м²/ч, подходит для ручного управления или приводом..

Гибкая вставка для всасывания или нагнетания, профильная рама с 4-мя отверстиями

Гибкая вставка термостойкая для всасывания или нагнетания, профильная рама с 4-мя отверстиями

Гибкая вставка, звукоизолированная

Гибкая вставка, теплоизолированная

Запасной фильтр

Рым-болты

Смотровое окно с двойным остеклением, диаметр мин. 150 мм

Освещение (230 В или 24 В)

Дифференциальный манометр

Манометр с наклонной трубой с/без дополнительного контакта

Датчик потока воздуха

Датчик расхода воздуха

Сервисный выключатель

Дифференциальное реле давления

Защита ремня, начиная с KG/KGW Top 170

Выравнивание потенциалов 10 мм²

Дверная защитная решетка

Принадлежности

Секции / Размеры

KG/KGW Top			21	43	64	96	130	170	
Секция вентилятора		ДШ	712 712	814 712	1017 1017	1119 1017	1322 1322	1322 1322	
		В	509	712	712	1017	1017	1322	
Секция		7 Д	712	814	915	1017	1119	1322	
прямоприводного вентилятора		В	712 509	712 712	1017 712	1017 1017	1322 1017	1322 1322	
A						оны всасывани	-		
 Секция нагрева		┛ Д	305	305	305	305	305	305	
(также для KVS)	+/	Ш	712	712	1017	1017	1322	1322	
		В	509	712	712	1017	1017	1322	
Снкция нагрева	+ /1 1	Д	509	509	509	509	509	509	
с рамой термостата		Ш	712	712	1017	1017	1322	1322	
ащиты от замерзания	/ 4	В	509	712	712	1017	1017	1322	
Секция охладителя	\-\	Д	610	610	610	610	610	610	
(также для KVS)		Ш В	712 509	712 712	1017 712	1017 1017	1322 1017	1322 1322	
		Д	814	814	814	814	814	814	
секция охладителя, длинная		Ш	712	712	1017	1017	1322	1322	
также для KVS)		В	509	712	712	1017	1017	1322	
Секция орошения	пап	Д		1017	1017	1017	1017	1017	
		Ш		712	1017	1017	1322	1322	
	-0 -	В		962	962	1267	1267	1572	
Смесительная/вытяжная		Д	610	610	712	814	915	915	
:екция (2 внутр. клапана _ + 203 мм)		Ш В	712 509	712 712	1017 712	1017 1017	1322 1017	1322 1322	
,			814	814	915	1017	1119	1119	
Смесительная/секция фильтра (2 внутр. клапана	3	Д	814 712	814 712	1017	1017	1322	1322	
_ + 203 мм)		В	509	712	712	1017	1017	1322	
Короткая секция фильтра	7	Д	305	305	305	305	305	305	
	**	Ш	712	712	1017	1017	1322	1322	
		В	509	712	712	1017	1017	1322	
Секция карманного		Д	712	712	712	712	712	712	
фильтра	\mathbb{H}	Ш В	712 509	712 712	1017 712	1017 1017	1322 1017	1322 1322	
Vonotkag cokuus			509	509	509	509	509	509	
Короткая секция карманного фильтра	\square	Д	509 712	712	1017	1017	1322	1322	
· · · · · · · · · · · · · · · · · · ·	\exists	В	509	712	712	1017	1017	1322	
Секция шумоглушителя									
Тип 11	$\llbracket _{1}I_{1}I_{1}\rrbracket =$	Д	915	915	915	915	915	915	
Тип 12 Тип 13		Д	1119 1424	1119 1424	1119 1424	1119 1424	1119 1424	111 1424	
тип 13 Тип 14		Д Д	1627	1627	1627	1627	1627	1627	
		ш	712	712	1017	1017	1322	1322	
		В	509	712	712	1017	1017	1322	
Пустая секция с/без		Д	305	305	305	305	305	305	
ревизионной двери		Д	509	509	509	509	509	509	
_	ш.	Д	712	712	712	712	712	712	
Пустая секция пароувлажн	нителя LD		1424 712	1424 712	1424 1017	1424 1017	1424 1322	1424 1322	
		Ш В	712 509	712	712	1017	1322	1322	
Секция рекуператора		Д	1220	1220	1220	1627	1627	2034	
КGXD 2-х этаж./бок к боку		ш	712	712	1017	1017	1322	1322	
,	\7	В	1018	1424	1424	2034	2034	2644	
Секция роторного		Д	400	400	400	400	400	400	
рекуператора RWT		'ШхВ	1424x915	1424x1119	2034x1322	2034x1627	2644x1830	2644x1830	
	**	'ШхВ	1119x1017	1119x1424	1424x1424	1627x2034	1932x2034	1932x2644	

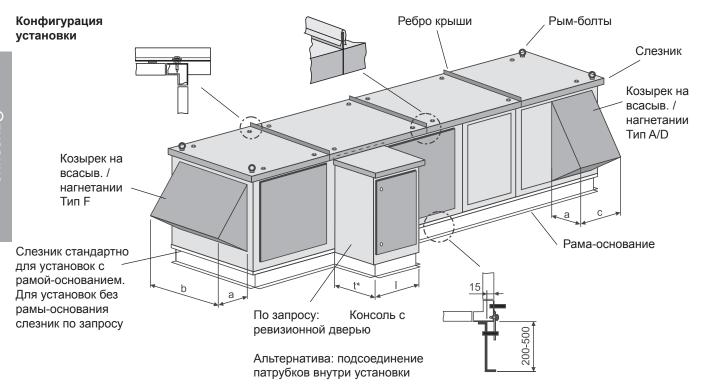
Размеры в [мм] * Потоки бок к боку ** Потоки один над другим Для **KGW**: Выступ крыши по бокам 50 мм, высота от 30 до 60 мм, высота рамы-основания 200 мм мин.

KG/KGW Top

								1	
210	270	320	380	450	510	600	680	850	1000
1627 1627 1322	1627 1627 1627	1932 1932 1627	1932 1932 1932	1985 2290 1985	2290 2595 1985	2290 2595 2290	2391 2595 2595	2290 3205 2595	2290 3815 2595
1322 1627 1322	1424 1627 1627	1525 1932 1627	1830 1932 1932	1883 2290 1985	1883 2595 1985	2086 2595 2290			
Длина пустой	секции =1,5х	диаметр рабо	очего колеса						
305 1627 1322	305 1627 1627	305 1932 1627	305 1932 1932	357 2290 1985	357 2595 1985	357 2595 2290	357 2595 2595	662 3205 2595	662 3815 2595
509 1627 1322	509 1627 1627	509 1932 1627	509 1932 1932	560 2290 1985	560 2595 1985	560 2595 2290	560 2595 2595	865 3205 2595	865 3815 2595
610 1627 1322	610 1627 1627	610 1932 1627	610 1932 1932	662 2290 1985	662 2595 1985	662 2595 2290	662 2595 2595	865 3205 2595	865 3815 2595
814 1627 1322	814 1627 1627	814 1932 1627	814 1932 1932						
1017 1326 1572	1017 1627 1877	1427 1932 1927	1424 1932 2232						
1119 1627 1322	1119 1627 1627	1322 1932 1627	1322 1932 1932	1374 2290 1985	1578 2595 1985	1578 2595 2290	1578 2595 2595	1985 3205 2595	2086 3815 2595
1322 1627 1322	1322 1627 1627	1830 1932 1627	1830 1932 1932						
305 1627 1322	305 1627 1627								
712 1627 1322	712 1627 1627	712 1932 1627	712 1932 1932	764 2290 1985	764 2595 1985	764 2595 2290	1273 2595 2595	1273 3205 2595	1273 3815 2595
509 1627 1322	509 1627 1627	509 1932 1627	509 1932 1932	560 2290 1985	560 2595 1985	560 2595 2290	1070 2595 2595	1070 3205 2595	1070 3815 2595
915 1119 1424 1627 1627 1322	915 1119 1424 1627 1627 1627	915 1119 1424 1627 1932 1627	915 1119 1424 1627 1932 1932	967 1171 1476 1679 2290 1985	967 1171 1476 1679 2595 1985	967 1171 1476 1679 2595 2290	967 1171 1476 1679 2595 2595	967 1171 1476 1679 3205 2595	967 1171 1476 1679 3815 2595
305 509 712	305 509 712	305 509 712	305 509 712	560 764 967	560 764 967	560 764 967	- 764 967	- 764 967	- 764 967
1424 1627 1322	1627 1627 1627	1627 1932 1627	1627 1932 1932	1679 2290 1985	1679 2595 1985	1679 2595 2290	1679 2595 2595	1679 3205 2595	1679 3815 2595
2034 1627 2644	2440 1627 3254								
440 3254x2237 2237x2644	440 3254x2237 2237x3254	440 3864x2542 2745x3254	440 3864x2847 2745x3864						
	1627 1627 1322 1322 1322 1322 Длина пустой 305 1627 1322 509 1627 1322 610 1627 1322 814 1627 1322 1017 1326 1572 1119 1627 1322 1322 1627 1322 1322 1627 1322 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 509 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322 712 1627 1322	1627 1627 1627 1627 1627 1627 1322 1627 1322 1424 1627 1627 1322 1627 1322 1627 305 305 1627 1627 1322 1627 509 509 1627 1627 1322 1627 610 610 1627 1627 1322 1627 814 814 1627 1627 1322 1627 1017 1017 1326 1627 1572 1877 1119 1119 1627 1627 1322 1627 1322 1627 1322 1627 1322 1627 1322 1627 1322 1627 1322 1627 1322 1627 1322 1627 1322 1627 <	1627 1627 1932 1627 1627 1932 1322 1627 1627 1322 1424 1525 1627 1627 1932 1322 1627 1627 1322 1627 1627 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1322 1627 1932 1572 1877 1927 1119 1119 1322 1627 1932 1322	1627 1627 1932 1932 1627 1627 1932 1932 1322 1627 1627 1932 1322 1627 1627 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1627 1932 305 305 305 305 1627 1932 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932 1322 1627 1932 1932	1627 1627 1932 1932 1932 2290 1322 1627 1932 1932 2290 1322 1627 1627 1932 1985 1322 1424 1525 1830 1883 1627 1627 1932 1932 2290 1322 1627 1627 1932 1985 Длина пустой секции =1,5х диаметр рабочего колеса 305 305 305 305 357 1627 1627 1932 1932 2290 1322 1627 1627 1932 1985 509 509 509 509 560 1627 1627 1932 1985 2290 1322 1627 1627 1932 1985 610 610 610 610 662 662 1627 1627 1932 1932 1985 814 814 814 814 814 <td>1627 1627 1932 1932 1985 2290 2595 1985 <t< td=""><td> 1627 1627 1932 1932 1985 2290 2595 </td><td> 1627</td><td> 1627</td></t<></td>	1627 1627 1932 1932 1985 2290 2595 1985 <t< td=""><td> 1627 1627 1932 1932 1985 2290 2595 </td><td> 1627</td><td> 1627</td></t<>	1627 1627 1932 1932 1985 2290 2595	1627	1627

по запросу

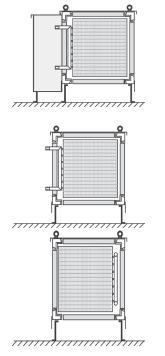
Bec


KG/KGW Top		21	43	64	96	
Секция вентилятора	Секция вентилятора с вперед загн. лопатками	43	60	90	135	
без эдектродвигателя	Секция вентилятора с назад загн. лопатками	39	55	85	135	
Прямоприводной вентилятор	с электродвигателем	61	86	158	233	
Секция нагрева Cu/Al	Секция нагрева	25 36	35 50	45 65	55 95	
	Секция нагрева тип 1, полностью Секция нагрева тип 2, полностью	36	50	65	95 95	
	Секция нагрева тип 3, полностью	39	55	75	100	
	Секция нагрева тип 4, полностью	43	60	80	110	
Секция нагрева KVS	Секция нагрева тип II, полностью	54	75	105	140	
	Секция нагрева тип III, полностью	57	80	110	150	
Секция нагрева Cu/AI с рамой	Секция нагрева с рамой термостата защ. от замерз.	32	45	55	65	
термостата защ. от замерзания		43	60	75	105	
	Секция нагрева тип 2, полностью Секция нагрева тип 3, полностью	43 46	60 65	75 85	105 110	
	Секция нагрева тип 4, полностью	50	70	90	120	
Секция нагрева	Секция нагрева	25	35	45	55	
оцинкованная сталь	Секция нагрева тип 1, полностью	57	80	115	160	
	Секция нагрева тип 2, полностью	71	100	150	215	
	Секция нагрева тип 3, полностью	71	100	160	230	
	Секция нагрева тип 4, полностью	104	145	230	340	
Секция нагрева	Секция нагрева с рамой термостата защ. от замерз.	32	45	55	65	
оцинкованная сталь с рамой термостата защ. от замерзания	Секция нагрева тип 1, полностью Секция нагрева тип 2, полностью	64 79	90 110	125 160	170 225	
термостата защ. от замерзания	Секция нагрева тип 3, полностью	82	115	170	240	
	Секция нагрева тип 4, полностью	111	155	240	350	
Секция охлаждения	Секция охлаждения	32	45	55	65	
	Секция охлаждения с каплеотделителем	36	50	65	75	
	Секция охлаждения полн. с испарителем тип А	54	75	100	130	
	Секция охлаждения тип 7 / испаритель тип В	61	85	115	150	
	Секция охлаждения тип 8 Секция охлаждения тип 12	64 57	90 80	120 110	160 180	
Секция охлаждения KVS	Секция охлаждения тип II, полностью	61	85	115	150	
ondin on and and	Секция охлаждения тип III, полностью	64	90	120	160	
Секция охлаждения длинная	Секция охлаждения	43	60	65	85	
	Секция охлаждения с каплеотделителем	46	65	75	95	
	Секция охлаждения полн. с испарителем тип А	64	90	110	150	
	Секция охлаждения тип 7 / испаритель тип В	71 75	100 105	125 130	170 180	
	Секция охлаждения тип 8 Секция охлаждения тип 12	68	95	120	200	
Секция охлаждения KVS	Секция охлаждения тип II, полностью	71	100	125	170	
длинная	Секция охлаждения тип III, полностью	75	105	130	180	
Секция орошения	Секция орошения	-	145	170	210	
Вытяжная/пустая секция	Вытяжная/пустая секция	32	45	60	95	
	Вытяжная/пустая секция с 1 клапаном	39	55	70	110	
Секция смешения/фильтра	Секция смешения/фильтра	36	50	75	110	
Секция карманнного фильтра	Секция смешения/фильтра, полностью с фильтром G4 Секция с карманным фильтром G4, F5, F7, F9	39 43	55 60	80 80	125 125	
Кор. секция карманнного фильтра	Секция с карманным фильтром G4, F5, F7, F9	43	60	80	125	
Секция шумоглушителя		57	80	105	155	
оекция шумоглушителя	Секция шумоглушителя полностью, тип 11 Секция шумоглушителя полностью, тип 12	68	95	125	185	
	Секция шумоглушителя полностью, тип 13	79	110	140	215	
	Секция шумоглушителя полностью, тип 14	93	130	175	260	
Пустая секция *	Длина в мм / вес	305/25	305/35	305/45	305/55	
		509/35	509/45	509/55	509/65	
_		712/50	712/70	712/80	712/90	
Поворотная секция	Длина в мм / вес	712/50	712/70	1017/85	1017/95	
Пустая секция пароувлажнител		100	140	120	125	
Перекрестноточный рекуператор	KGXD вертикальный KGXD горизонтальный	154 154	215 215	315 315	520 520	
Роторный рекуператор	RWT	96	135	185	255	
Крыша (только для KGW)	Погонный метр	2	2,9	4,2	4,2	
Рама-основание (200 мм выс.)	Погонный метр	5	5,1	5,1	5,1	
Рама-основание (200 мм выс.)	кг/м длины установки	15	20	20	25	
. aa conobanne (200 MINI BBIC.)	A PARTIE TOTALIONAL	1.0			20	

KG/KGW Top

400	470	040	070	200	000	450	E40	000	000	050	4000
130 167	170 200	210 264	270 325	320 463	380 550	450 645	510 825	600 865	680 950	850 1072	1000 1194
167	200	272	335	480	570	725	961	1001	1120	1242	1364
332	398	471	580	724	860	871	1077	1137	Запрос	Запрос	Запрос
54	65	61	75	93	110	247	273	301	330	429	499
88	105	85	105	160	190	347	383	421	460	579	689
92 104	110 125	98 106	120 130	168 185	200 220	367 407	413 453	161 501	510 550	629 679	754 819
117	140	122	150	202	240	437	483	541	600	729	884
154	185	154	190	202	240	587	653	721	670	829	1009
167	200	171	210	253	300	647	713	781	730	879	1069
71 117	85 140	89 122	110 150	122 185	145 220	264 364	293 403	321 441	350 480	452 602	525 715
117	140	130	160	194	230	384	433	481	530	652	715
121	145	138	170	211	250	424	473	521	570	702	845
133	160	154	190	227	270	454	503	561	620	752	910
54 102	65	61 284	75 250	93 581	110						
192 258	230 310	439	350 540	640	690 760	Запрос	Запрос	Запрос	Запрос	Запрос	Запрос
313	375	496	610	926	1100						
458	550	658	810	1095	1300						
71 208	85 250	89 317	110 390	122 632	145 750						
275	330	471	580	665	750 790	Запрос	Запрос	Запрос	Запрос	Запрос	Запрос
329	395	520	640	926	1100	,	,	1, 2, 2			
475	570	683	840	1095	1300						
71 83	85 100	81 114	100 140	105 152	125 180	273 373	302 412	331 451	360 490	452 306	525 715
146	175	195	240	-	-	-	-	-	-	-	-
171	205	203	250	211	250	633	702	771	840	1002	1225
183 208	220 250	236 309	290 380	328 438	390 520	673 723	752 802	821 881	910 970	1052 1142	1285 1345
171	205	203	250	286	340	633	702	771	830	1002	1225
183	220	228	280	312	370	673	752	821	910	1052	1285
88	105	100	125	131	155						
100 163	120 195	134 215	165 265	177	210						
188	225	223	275	236	280	Запрос	Запрос	Запрос	Запрос	Запрос	Запрос
200	240	256	315	354	420		·	·	·	·	
225 188	270 225	329 223	405 275	463 312	550 370						
200	240	248	305	337	400						
225	270	260	320	345	410	Запрос	Запрос	Запрос	Запрос	Запрос	Запрос
104	125	122	150	185	220	346	402	429	458	582	702
125	150	154	190	261	310	406	472	495	540	662	792
129 146	155 175	199 215	245 265	340 370	390 420	-	-	-	-	-	-
113	135	154	190	202	240	405	446	542	591	707	848
113	135	150	180	215	230	368	406	490	539	656	783
167	200	219	270	312	370	449	501	560	609	743	868
183	220	252	310	354	420	517	571	630	699	847	996
225 292	270 350	301 325	370 400	413 514	490 610	603 662	680 750	759 829	828 908	1002 1106	1176 1303
305/50	305/60	305/65	305/70	305/80	305/90	560/264	560/290	560/316	-	-	-
509/67	509/80	509/85	509/90	509/95	509/100	760/282	760/320	760/341	760/369	760/441	760/512
712/100	712/120	712/130	712/130	712/140	712/180	970/299	970/330	970/360	970/389	970/463	970/538
1321/100 150	1321/130 180	1627/240 240	1627/290 290	1931/320 300	1931/340 360	362	400	429	- 458	546	633
779	935	1121	1380	Запрос	Запрос	Запрос	Запрос	429 Запрос	Запрос	Запрос	Запрос
779	935	1121	1380	Запрос	Запрос						
283	340	382	470	648	770	Запрос	Запрос	Запрос	Запрос	Запрос	Запрос
					7,9	10	13	13	13	16	16
5,1	5,1	5,1	5,1	7,9	1,9	10	13	13	10	10	10
5,1 5,1	5,1 5,1	5,1	5,1 5,1	7,9 5,1	5,1	5,1	5,1	5,1	5,1	5,1	5,1

Погодозащищенное исполнение KG/KGW Top


Размеры

Козырек на всасывании / нагнетании

Размеры [мм]

KGW	21	43	64	96	130	170	210	270	320	380	450	510	600	680	850	1000
а	318	462	462	678	678	893	893	678	678	893	По запросу					
b	668	668	973	973	1278	1278	1583	1583	1888	1888		П	о запро	су		
С	566	566	668	770	871	871	1075	1075	1278	1278	По запросу					

^{*} в зависимости от конфигурации устновки : t = мин. 500 мм

Подсоединения снаружи установки в погодозащищенной консоли с ревизионной дверью. Опционально консоль с изоляцией.

(I = в зависимости от конфигурации установки).

Подсоединения снаружи установки.

Подсоединения нагревателя внутри установки, патрубки загнуты по или против хода воздуха. Подсоединения охладителя внутри установки, патрубки загнуты против хода воздуха. Подсоединения труб и установка арматуры в пустой секции, расположенной рядом.

Изоляция труб и арматуры осуществляется заказчиком

Присоеденительные размеры

KG/KGW Top

Присоединительные размеры

Подсоединение воздуховода снизу (KGW)

вид спереди сторона обслужив.

Для нагревателя с подсоединением внутри **требуется** дополнительная пустая секция для подсоедиения труб **до или после** секции нагревателя.

Минимальная длина пустой секции І = 600 мм.

Для охладителя с подсоединением внутри **требуется** дополнительная пустая секция для подсоедиения труб **до** секции охладителя. Подсоединение охладителя может быть только против хода воздуха.

Минимальная длина пустой секции $I_{\text{мин}}$ = 600 мм.

Все отверстия в установках для прохода труб должны быть уплотнены для предотвращения попадания воды до того, как кондиционер будет установлен.

KG-		Сек	ция ве	ентиля	тора				Смесі	ит./секі	ция фи	льтра	Вы	тяжная	і секці	и Я
ТОР	вхо	д возд	цуха		ВЫ	ход во	здуха		вхс	д/вых	од воз	духа	вхс	д/вых	од воз	духа
	а	b	С	d	а	b	С	d	а	b	е	f	а	b	е	f
21	303	303	205	205	249	249	238	428	303	303	103	408	303	303	103	205
43	303	405	205	205	338	338	219	359	303	405	205	205	303	405	103	103
64	608	405	306	306	411	411	223	586	608	405	103	407	608	405	103	204
96	608	608	255	255	503	503	239	581	608	608	103	306	608	608	103	103
130	913	710	306	306	619	619	299	608	913	710	103	305	913	710	103	103
170	913	710	306	306	619	619	299	608	913	710	103	305	913	710	103	103
210	1218	811	509	306	765	765	355	609	1218	811	306	205	1218	811	154	154
270	1218	811	509	306	765	765	355	609	1218	811	306	205	1218	811	154	154
320	1523	1015	713	205	898	898	470	665	1523	1015	205	611	1523	1015	205	103
380	1523	1015	713	205	898	898	470	665	1523	1015	205	611	1523	1015	205	103
450	1828	1015	817	154		ПО 3	апросу		1828	1015			1828	1015	154	206
510	1828	1218	919	154		по за	апросу		1828	1218			1828	1218	154	207
600	2113	1198	959	154		по за	апросу		2113	1198			2113	1198	154	247
680	2113	1198	1060	154		по за	апросу		2113	1198			2113	1198	154	247
850	2418	1401	756	154		по за	апросу		2418	1401			2418	1401	154	450
1000	2418	1503	654	154		по за	апросу		2418	1503			2418	1503	154	450

Электродвигатель / электрическое подключение KG/KGW Тор

Основные данные: Для температур окружающей среды до 40° С и высотой над уровнем моря до 1000 м.

Вычисленная мощность (ВМ) электродвигателя ниже при температурах окружающей среды выше 40°С или высотами над уровнем моря выше 1000 м:

Темепратура окр. среды	40°C	45°C	50°C	55°C
Процент от выч. мощности	100% BM	95% BM	90% BM	85% BM

Высота над у.м.	2000 м	3000 м	4000 м
Процент от выч. мощности	92 % BM	84 % BM	78 % BM

Тепловая классификация для повыш. температур:

Для температур окружающей среды выше 55°C.

Примечание:

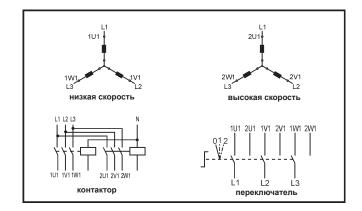
Многоскоростные электродвигатели выполнены для прямого запуска и прямого переключения на 2 и 3 скорости.


Рекомендуется устанавливать реле для запуска многоскоростных электродвигателей мощностью больше 10 кВт!

Защита мотора:

По запросу электродвигатели комплектуются защитой мотора термисторы (РТС) или термоконтакты.

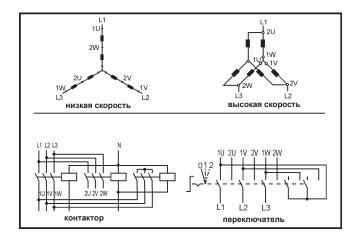
Электрическое подключение односкоростного эл.двигателя


электродвигатели мощностью до 2,2 кВт с прямым пуском, при мощностях от 3 кВт и выше необходимо предусмотреть схему мягкого пуска - переключение со звезды на треугольник.

Подключение 2-х скоростного эл. двигателя

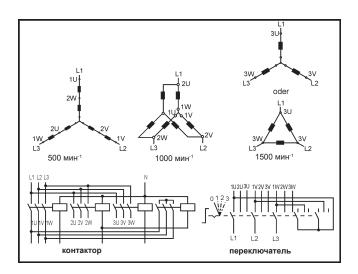
(2 независимых обмотки)

Пример подключения 1000/1500 мин⁻¹ или 750/1000 мин⁻¹

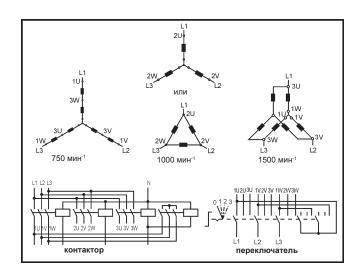


Электрическое подключение KG/KGW Top

Подключение 2-х скоростного эл. двигателя с соотношением 1:2


(обмотки Даландера с переключением полюсов)

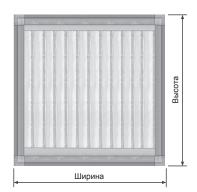
Пример подключения 1500/3000 мин⁻¹ или 750/1500 мин⁻¹


Подключение 3-х скоростного эл. двигателя

(2 отдельных обмотки, 1 обмотка Даландера с переключением полюсов) Пример подключения 500/1000/1500 мин⁻¹ или 8/6/4-полюсной конфигурации; 500/1000 мин⁻¹ с обмоткой Даландера с переключением полюсов.

Подключение 3-х скоростного эл. двигателя

(2 отдельных обмотки, 1 обмотка Даландера с переключением полюсов) Пример подключения 750/1000/1500 мин⁻¹ или 8/6/4-полюсной конфигурации; 750/1500 мин⁻¹ с обмоткой Даландера с переключением полюсов.



Карманный фильтр

KG/KGW Top

Карманный фильтр

Карманные фильтры классов G4, F5, F7, F9 в соотв. с DIN EN 779 оборудованы быстросъемным механизмом, фильтры снимаются без инструментов и выдвигаются в сторону.

Рамки фильтра прижимаются к установочной раме без зазоров по периметру. Рычажный быстросъемный прижимной механизм для предотвращения утечек.

Размеры [мм]

KG	21	43	64	96	130	170	210	270	320	380	450	510	600	680	850	1000
Длина	711	711	711	711	711	711	711	711	711	711	764	764	764	764	764	764
Ширина	711	711	1017	1017	1321	1321	1626	1626	1931	1931	2289	2594	2594	2594	3204	3814
Высота	509	711	711	1017	1017	1321	1321	1626	1626	1931	1984	1984	2289	2594	2594	2594

Размеры секций одинаковы для всех классов фильтров

Ревизионная дверь: с левой или правой стороны

Площадь поверхности фильтра [м²] и количество фильтров

Длинные карманы

Класс	21	43	64	96	130	170	210	270	320	380	450	510	600	680	850	1000
F5	2,2	4,5	6,75	10,2	13,5	18	22,5	28,2	33,8	40,5	47,3	54	63	72	90	108
F7	2,8	5,1	7,9	12,2	15,8	20,4	26,0	33,1	38,9	45,8	54,2	61,1	72,3	81,4	101,8	122,2
F9	2,8	5,82	8,62	12,97	17,24	23,28	28,88	36,03	43,32	52,38	60,78	69,84	81,04	93,12	116,4	139,7

Короткие карманы

Класс	21	43	64	96	130	170	210	270	320	380	450	510	600	680	850	1000
G4	0,9	2,17	3,07	4,4	6,14	8,68	10,5	12,7	15,7	19,5	22,2	26	29,6	34,7	43,4	52,1
F5	1,4	2,76	4,16	6,26	8,32	11,04	13,84	17,34	20,76	24,84	29,04	33,12	38,72	44,16	55,2	66,24
F7	1,75	3,23	4,98	7,58	9,96	12,92	16,42	20,77	24,63	29,07	34,32	38,76	45,76	51,68	64,6	77,52

Кол-во	21	43	64	96	130	170	210	270	320	380	450	510	600	680	850	1000
1/1	-	1	1	1	2	4	4	4	6	9	9	12	12	16	20	24
1/2	1	-	1	2	2	-	2	4	3	-	3	-	4	-	-	-
1/4	-	_	_	1	-	_	_	1	_	-	-	-	-	-	-	-

Примечание

Ревизионная дверь со стороны обслуживания для замены фильтра

Конечное падение давления Рекомендованное конечное падение давления согл. EN 13779: 200 Па для G4, F5, F7 300 Па для F9

Секция орошения

Корпус

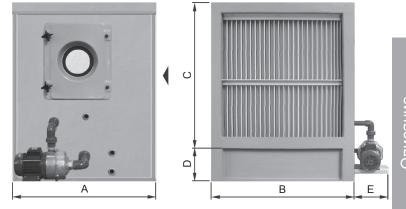
Пластик (стеклопластик)

Ревизионная дверь и подсоединения

с левой или правой стороны

Описание

Hacoc


Набор самоочищающизся форсунок с направлением распыления противоположно потоку воздуха Слив конденсата в поддоне со всех сторон к дренажному патрубку для его полного удаления конденсата

Насос полностью расключен по воде, с защитой от сухого хода

Ревиз. дверь со смотр. окном

Выравниватель потока Каплеотделитель

термостойкие до 70°C, съемные

Входной патрубок с наружней резьбой 3/4", с поплавковым клапаном и переливным патрубком DN 40 (DN 50 для KG 270 и выше), сливной патрубок DN 40 (DN 50 для KG 270 и выше),

По запросу: устройство удаления шлама, освещение 230 В / 60 Вт, затемнение смотрового окна.

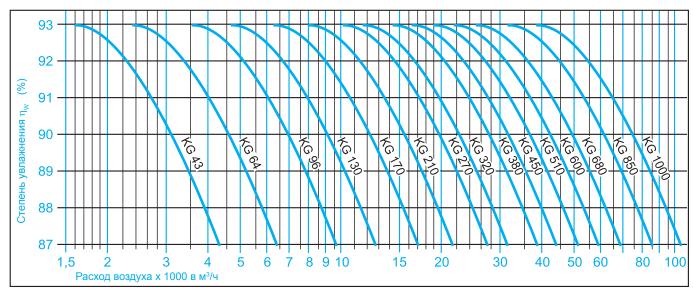
Сливные и переливные патрубки со встроенным сифоном, термометр, манометр

Технические данные

Камера орог	ш.KG	43	64	96	130	170	210	270	320	380	450	510	600	680	850	1000
Α	MM	1017	1017	1017	1017	1017	1017	1017	1424	1424						
В	ММ	712	1017	1017	1322	1322	1627	1627	1932	1932						
С	MM	712	712	1017	1017	1322	1322	1627	1627	1932						
D	MM	250	250	250	250	250	250	250	300	300	по запросу					
E	MM	250	250	280	350	350	350	350	600	600						
Мощность	кВт	1,5	1,5	2,2	4,0	4,0	4,0	4,0	5,5	5,5						
Ток	Α	6,1	6,1	4,9	8,8	8,8	8,8	8,8	12	12						
Напряжение	В	400	400	400	400	400	400	400	400	400						

Степень увлажнения η_w

для темп. воздуха 20°C, плотности 1,2 кг/м³, давления воды 2,6 Бар, расходе воды 4000 лІ/ч


$$\eta_{\rm W} = \frac{{\rm x}_2 - {\rm x}_1}{{\rm x}_{\rm s} - {\rm x}_1}$$

х = влагосодержание

Обозн. 1 = вход воздуха

2 = выход воздуха

S = нысыщенный воздух

Мультифункциональные элементы KG/KGW Тор

Описание

Мультифункциональные элементы (МФЭ) доступны для определенных типов секций, при этом в одной секции объединяются несколько функциональных элементов. Эта особенность позволяет уменьшить длину установки, уменьшить затраты на сборку установки.

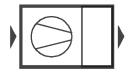
Мультифункциональные элементы применяются как альтернатива посекционной конструкции и могут быть использованы при точно известной конфигурации установки. Применение данной возможности ограничено типом секций, типоразмером, положением всасывания и нагнетания воздуха и т.п. Возможность испоьзования мультифункциональных элементов проверяется в каждом индивидуальном случае при помощи программы подбора "Konfigurator". Пожалуйста связывайтесь со своим дилером для проверки возможности применения.

Примеры типовых конфигураций

Примечание:

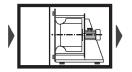
Установки с мультифункциональными элементами предмет разработки и внедрения в производство, поэтому указанные ниже примеры лишь часть возможных конфигураций.

МФЭ: нагреватель - вентилятор, поток воздуха горизонтально, положение нагнетания А


МФЭ: карманный фильтр (длинный) - нагреватель, поток воздуха горизонтально

МФЭ: карманный фильтр (короткий) - нагреватель, поток воздуха горизонтально

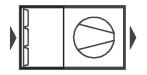
МФЭ: вентилятор - пустая секция, поток воздуха горизонтально



МФЭ: карманный фильтр (длинный)

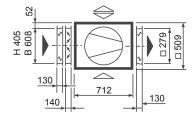
- вентилятор, поток воздуха горизонтально, положение нагнетания А

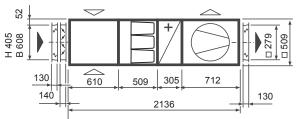
МФЭ: пустая секция - вентилятор (рабочее колесо свободного хода), поток воздуха горизонтально, положение нагнетания А


МФЭ: карманный фильтр (длинный)

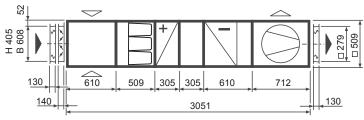
- нагреватель - вентилятор, поток воздуха горизонтально, положение нагнетания А

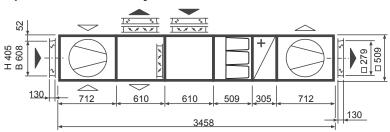
МФЭ: жировой фильтр

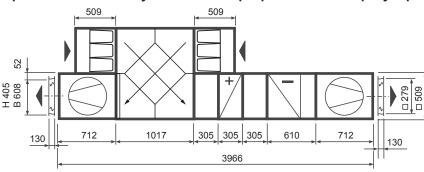

- кухонный вентилятор, поток воздуха горизонтально, положение нагнетания A

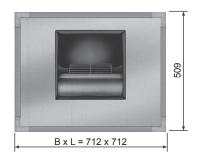


Центральный кондиционер KG Top 21


Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка

Приточно-вытяжная установка с перекрестноточным рекуператором

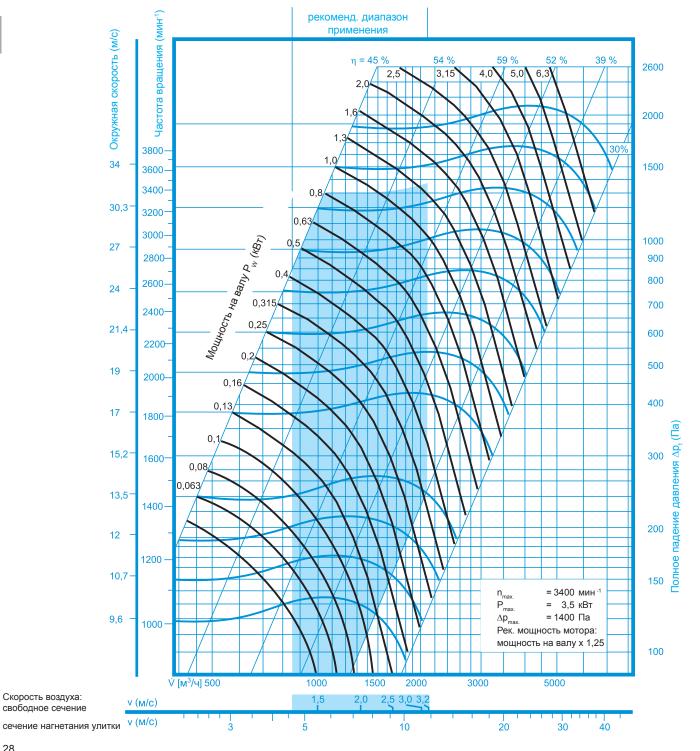
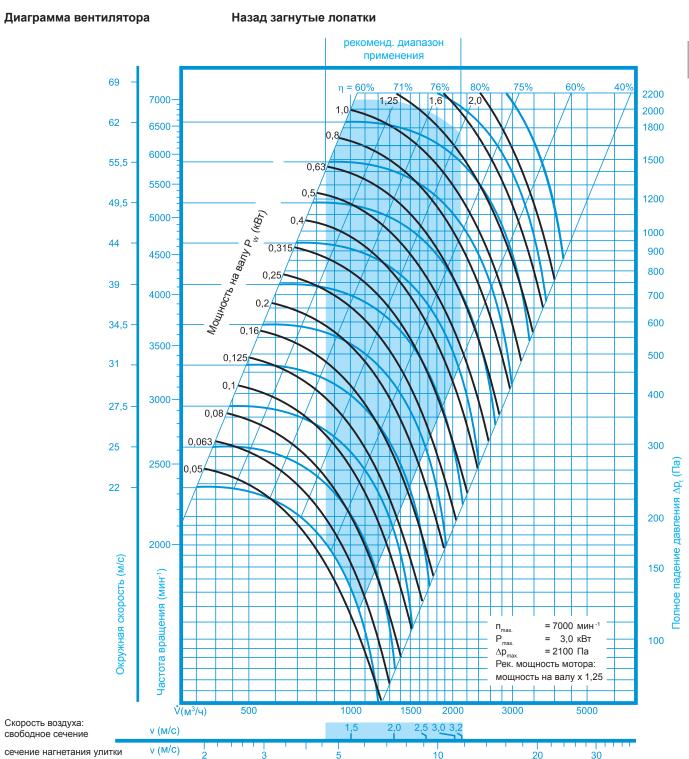


Диаграмма вентилятора

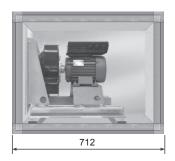
Вперед загнутые лопатки

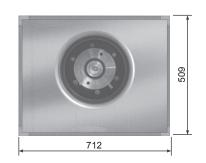

Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется


Ревизионная дверь: слева, справа или сверху, снизу по запросу



Прямоприводной вентилятор

KG Top 21

Свободный напор

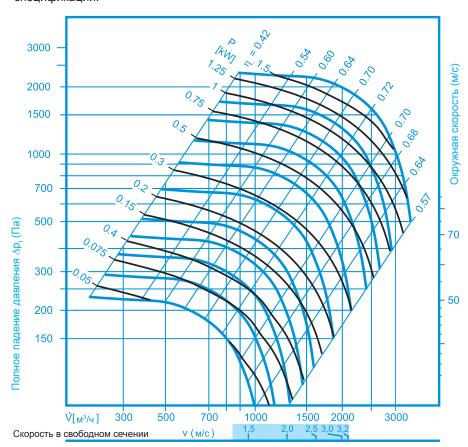
Внутреннее падение давления

Конкретный свободный напор определяется заказчиком.

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Динамическое давление

Технические данные

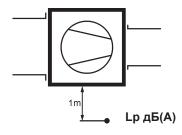

Не требуется учитывать динамическое давление для расчетов.

Типоразмер KG	Расход воздуха	Полное падение		ндартные данг лектродвигател	
	M ³ /4	давления Па	мощность кВт	ток А	
KG 21	2100	500 1000 1500	0,55 1,1 1,5	3000 3000 3000	1,38 2,45 3,4

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

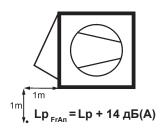
Диаграмма вентилятора Диаметр колеса 225 мм

Точные данные вентилятора могут быть получены только в заказной спецификации!

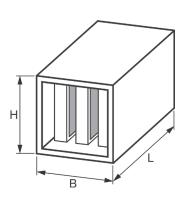

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

нагнетания, излучаемая секцией вентилятора.


		Полное падение давления ∆р [Па]										
	L _w	500	500 750 1000 1250 1500 2000									
ў [м³/ч]	2.000	87	91	93	95	97	99					

Уровень звукового давления Lр дБ(A)



Уровень звукового давления Lр дБ(A)

Со свободным всасыванием или нагнетанием

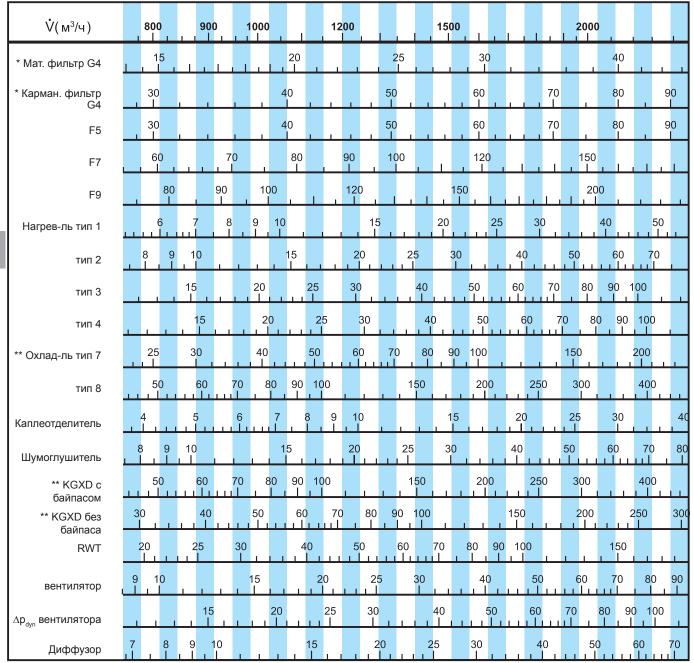
Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

		E	Зперед з	агнутые	лопатки						
Ů	n	Lp	Ů.	n	Lp	Ů.	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	1120	41		1250	47		1400	53			
1.500	1400	45	3.000	1600	49	4.000	1800	54			
""	1800	51	0.000	2000	53		2240	56			
	2240	56		2500	58		2800	61			
Назад загнутые лопатки											
Ÿ	n	Lp	Ů	n	Lp	Ů	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)			
	2000	46		2800	46		3550	48			
2.000	2500	47	3.000	3550	54	4.000	4000	55			
	3150	53		4000	58		4500	60			
	4000	60		5000	62		5000	62			
	Пр	ямоприв	одной в	ентилято	р, диаме	тр 355 м	М				
Ÿ	n	Lp	Ý	n	Lp	Ÿ	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	мин ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	1900	47		2100	49		2375	50			
2.000	2350	51	3.000	2500	52	4.000	2750	54			
	2650	53	5.300	2750	55		2900	56			
	3300	57		3300	58		3400	60			

Размеры (мм)

Шум


Высота Н	Ширина В	Длина L								
		Тип 11 Тип 12 Тип 13 Тип 14								
509	712	915	1119	1424	1627					

Погашение De дБ(А)

		Октавная полоса (Гц)												
Тип	63	125	250	500	1000	2000	4000	8000						
11	4	8	18	20	23	17	14	14						
12	5	10	22	24	28	20	15	15						
13	8	14	29	31	36	25	17	17						
14	9	16	33	35	41	28	19	19						

Для 2 подсоединенных шумоглушителей De = De, + De, - 3 дБ(A)

начальное пад. давл. + конечное пад давл. * Расчет:

> Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9: 300 Па

** Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	3/4"	0,6 л
2	3/4"	1,2 л
3	1"	1,2 л
4	1"	1,7 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

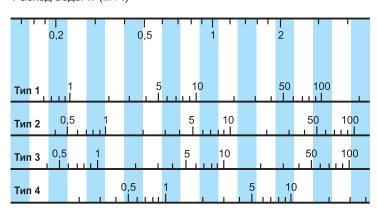
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

$$\dot{\mathbf{Q}}$$
 = мощность кВт $\Delta \mathbf{t}_{\mathrm{w}}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

Расход воды w (м³/ч)

Секция охлаждения Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Секция охлаждения Секция охлаждения длинная L = 610L = 814

Тип	Подсоединен.	Объем
7	1"	1,7 л
8	1"	45п

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

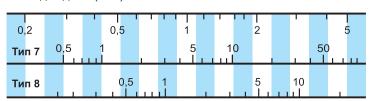
Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M/	'c)	1,5		2,0	1	2,5	;	3,0)	3,2	
У (м³	/4)	1 00	0	1 30		1 70		2 00	0	2 10	0
Хол. в.	t _{∟∈} °C	Q	t _{∟A} °C	Q	t _{LA}	Q	t _{LA}	Q	t _{LA} °C	Q	t _{LA} °C
1000	°C	кВт	°C	кВт	C	кВт	C	кВт	°C	кВт	°C
						ель тип					
	32	7,4	16,5	9,0	17,8	10,4	18,8	11,7	19,5	12,2	19,8
4/8	28	6,2	15,2	7,5	16,3	8,7	17,1	9,8	17,8	10,2	18,0
	26 25	5,5 5,2	14,3 13,8	6,7 6,3	15,3 14,8	7,7 7,2	16,0 15,5	8,7 8,1	16,6 16,1	9,0 8,5	16,9 16,3
	32 28	6,7	17,3	8,1	18,6	9,3	19,5	10,5	20,2 18,5	10,9	20,5 18,7
5/10	26 26	5,5 4,8	16,1 15,1	6,6 5,8	17,1 16,1	7,6 6,7	17,9 16,7	8,6 7,5	17,3	8,9 7,8	17,5
	25	4,6	14,7	5,6 5,4	15,5	6,2	16,7	6,9	16,7	7,8	16,9
	32	5,9	18,1	7,2	19,2	8,3	20,1	9,3	20,7	9,7	21,0
6/12	32 28	5,9 4,7	16,8	7,2 5,7	17,8	6,6	18,5	9,3 7,4	19,0	9,7 7,7	19,2
0/12	26	4,0	15,9	4,9	16,7	5,6	17,3	6,3	17,8	6,5	17,9
	25	3,7	15,3	4,5	16,1	5,1	16,7	5,7	17,2	6,0	17,3
	32	5,9	18,0	7,2	19,1	8,4	20,0	9,4	20,6	9,8	20,9
8/12	28	4,7	16,8	5,8	17,7	6,7	18,3	7,5	18,9	7,8	19,1
0/12	26	4,0	15,8	4,9	16,6	5,7	17,2	6,4	17,7	6,6	17,8
	25	3,7	15,3	4,5	16,0	5,2	16,6	5,8	17,0	6,1	17,2
				Ох	ладит	ель тип	8				
	32	12,0	7,1	15,4	7,8	18,6	8,4	21,6	9,5	22,7	9,7
4/8	28	10,3	7,0	13,2	7,7	15,8	8,3	18,3	9,2	19,3	9,4
4/0	26	9,2	6,9	11,7	7,5	14,1	8,0	16,3	8,9	17,1	9,1
	25	8,6	6,9	11,0	7,4	13,2	7,9	15,2	8,3	16,0	8,9
	32	11,0	8,7	14,0	9,4	16,8	9,9	19,5	10,4	20,5	11,0
5/10	28	9,2	8,6	11,7	9,3	14,1	9,8	16,3	10,2	17,1	10,7
0,10	26	8,1	8,5	10,3	9,1	12,3	9,5	14,2	9,9	14,9	10,1
	25	7,5	8,5	9,5	9,0	11,4	9,4	13,1	9,8	13,8	9,9
	32	9,9	10,3	12,5	10,9	15,0	11,4	17,4	11,9	18,3	12,0
6/12	28	8,1	10,2	10,3	10,8	12,2	11,3	14,1	11,7	14,8	11,8
	26	6,9	10,1	8,8	10,6	10,4	11,0	12,0	11,4	12,6	11,5
	25	6,3	10,1	8,0	10,5	9,5	10,9	11,0	11,2	11,5	11,3
	32	9,5	10,8	12,1	11,3	14,6	11,8	17,0	12,1	17,9	12,3
8/12	28 26	7,7 6,5	10,8 10,7	9,9 8,4	11,2 11,0	11,9 10,0	11,6 11,4	13,7 11,6	11,9	14,5 12,2	12,0 11,7
	26 25	6,0	10,7	0,4 7,6	11,0	9,1	11,4	10,6	11,6 11,5	11,1	11,7
	20	0,0	10,0	1,0	11,0	ا , ق	11,5	10,0	11,3	11,1	11,0

Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл. 26°C / 49 % отн.вл., 25°C / 50 % отн.вл.

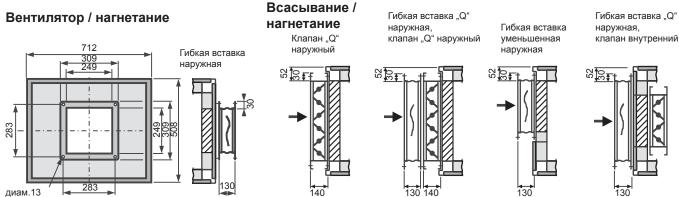
Другие рабочие значения по запросу

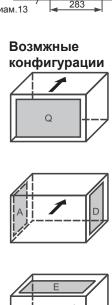

Падение давления воды (кПа)

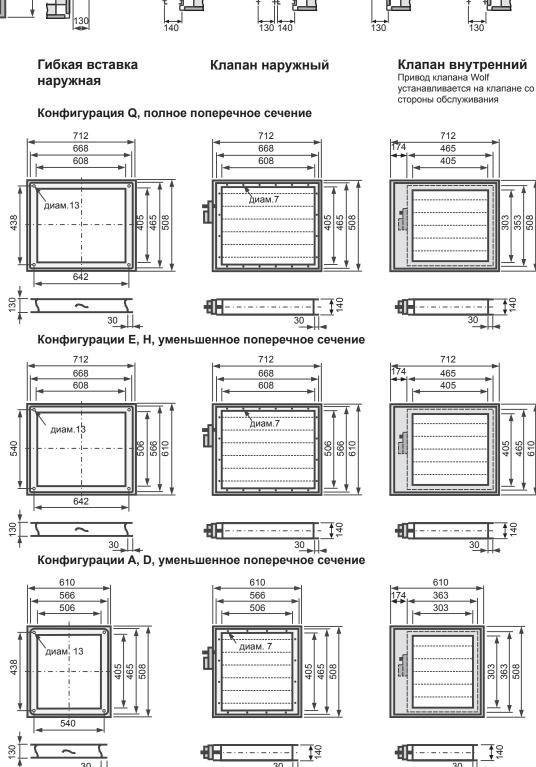
 $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{W}} \quad (M^{3}/4)$ Расход воды

Q = Мощность в кВт

 $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$


Расход воды w (м³/ч)





Возможные комбинации клапанов и гибких вставок

KG Top 21

Рекуперация тепла

KG Top 21

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

Типоразмер	Расход возд	духа Ѷ [м³/ч]	Р	азмеры [м	м]	Вес [кг]	Подсоединение
	без байпаса	с байпасом	а	b	С		отвода конденсата
KGXD 21	2700	2100	1017	712	1220	154	1 1/4"

Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает

Описание RWT

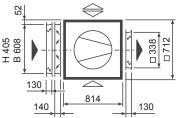
RWT Потоки воздуха горизонтально/вертикально

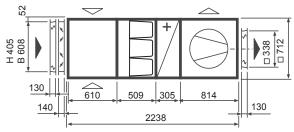
приточному.

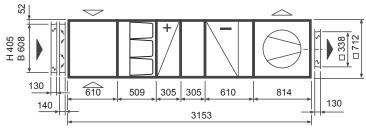

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

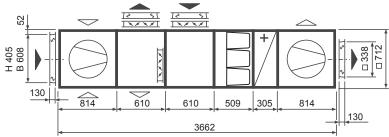
KG	А	В	С	D	Е	F	G
21	915	1424	509	712	509	406	400

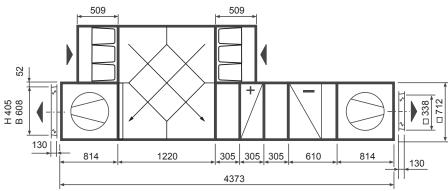
Размеры (мм)

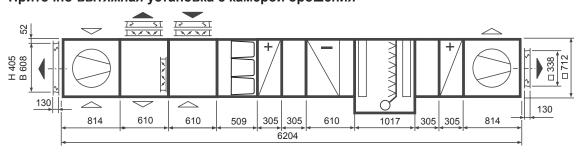

Вид сверху

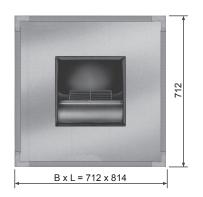

Центральный кондиционер


Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором

Приточно-вытяжная установка с камерой орошения

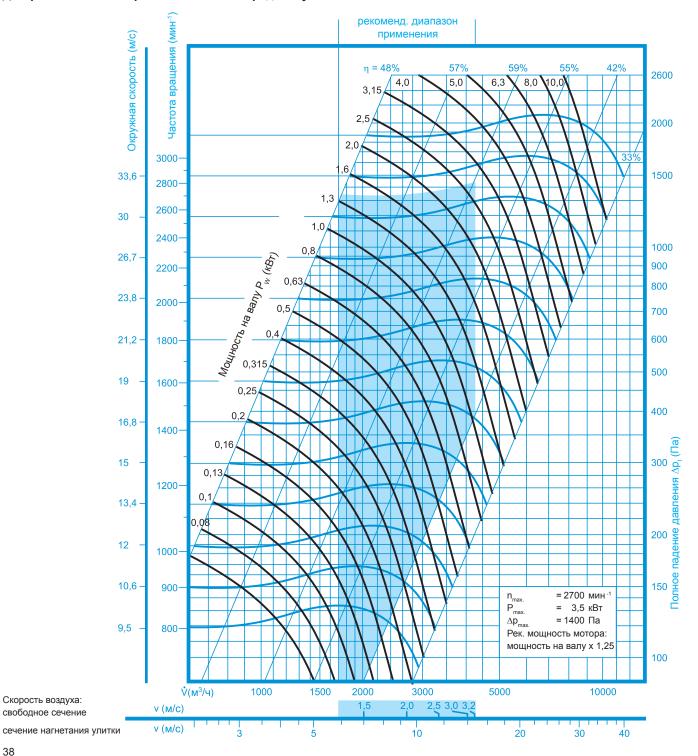
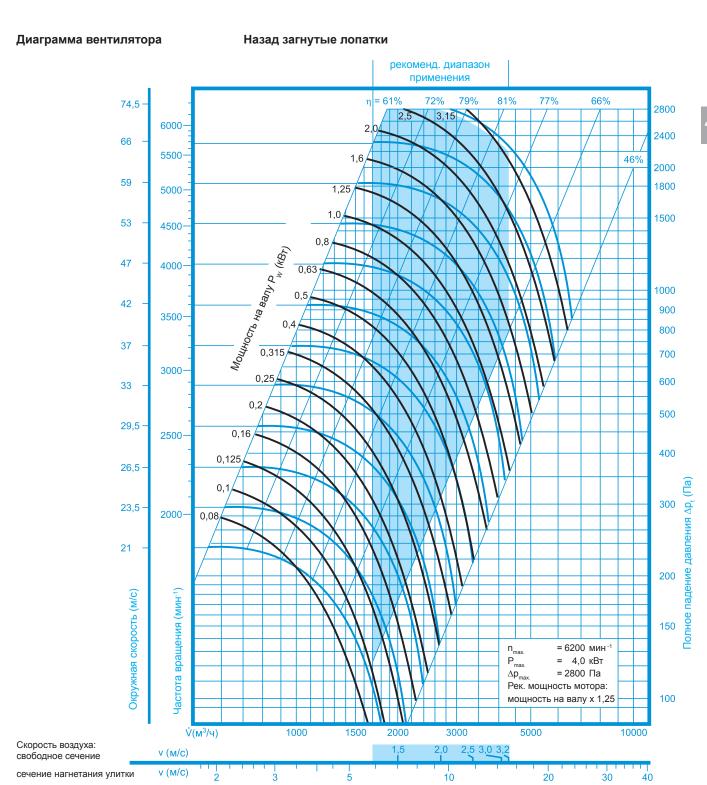


Диаграмма вентилятора

Вперед загнутые лопатки

Скорость воздуха:

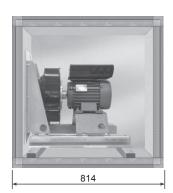
свободное сечение


Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется


Ревизионная дверь: слева, справа или сверху, снизу по запросу

Прямоприводной вентилятор

KG Top 43

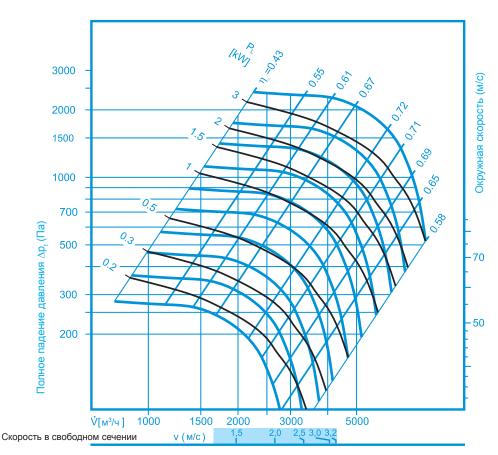
Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Диаграмма вентилятора Диаметр колеса 355 мм Конкретный свободный напор определяется заказчиком.

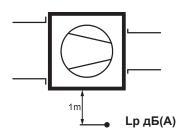

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Типоразмер КG	Расход воздуха	Полное падение	Стандартные данные* электродвигателя		
	м ³ /ч	давления Па	мощность кВт	частота вращ. мин ⁻¹	ток А
KG 43	4000	500 1000 1500	1,5 2,2 3,0	3000 3000 3000	3,40 4,65 6,10

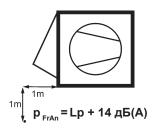
^{*} Скорость вентилятора при частоте (f \geq 50Гц)

Точные данные вентилятора могут быть получены только в заказной спецификации!

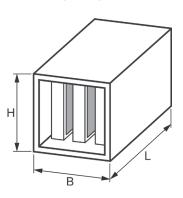

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

 $L_{_{w}}[дБ]$ = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.


			Полное падение давления ∆р [Па]								
	L _w	500	750	1000	1250	1500	2000				
_	2.000	87	91	93	95	97	99				
[M³/4]	3.000	89	92	95	97	98	101				
۱ <u>۱</u>	4.000	90	94	96	98	100	102				

Уровень звукового давления Lр дБ(A)



Уровень звукового давления Lр дБ(A)

Со свободным всасыванием или нагнетанием

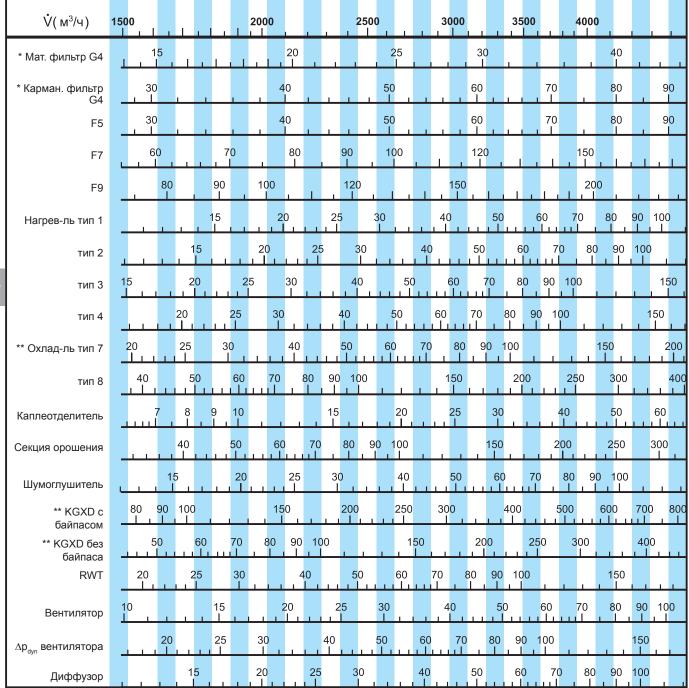
Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

		E	Вперед з	агнутые .	лопатки						
V	n	Lp	•	n	Lp	V	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	М ³ /Ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	1120	41		1250	47		1400	53			
2.000	1400	45	3.000	1600	49	4.000	1800	54			
	1800	51		2000	53		2240	56			
	2240	56		2500	58		2800	61			
	Назад загнутые лопатки										
V	n	Lp	Ý	n	Lp	V	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	2000	46		2800	46		3550	48			
2.000	2500	47	3.000	3550	54	4.000	4000	55			
	3150	53		4000	58		4500	60			
	4000	60		5000	62		5000	62			
	Пр	ямоприв	одной в	ентилято	р, диаме	тр 355 м	М				
Ý	n	Lp	V	n	Lp	V	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	мин ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	1900	47		2100	49		2375	50			
2.000	2350	51	3.000	2500	52	4.000	2750	54			
	2650	53]	2750	55		2900	56			
	3300	57		3300	58		3400	60			

Размеры (мм)

Шум


Высота Н	Ширина В	Длина L						
		Тип 11 Тип 12 Тип 13 Тип 14						
712	712	915	1119	1424	1627			

Погашение De дБ(А)

I			Октавная полоса (Гц)									
ı	Тур	63	125	250	500	1000	2000	4000	8000			
I	11	4	8	18	20	23	17	14	14			
ı	12	5	10	22	24	28	20	15	15			
ı	13	8	14	29	31	36	25	17	17			
ı	14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей De = De $_1$ + De $_2$ - 3 дБ(A)

начальное пад. давл. + конечное пад давл. * Расчет:

Рек. конечное падение давления по

EN 13779:

Фильтр G4, F5, F7: 200 Па

F9: 300 Па

Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	3/4"	1,8 л
2	3/4"	1,8 л
3	1"	2,7 л
4	1"	2,7 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

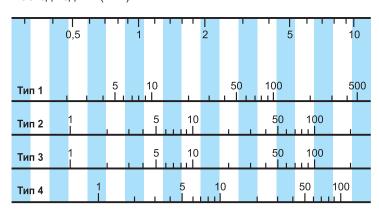
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$$
 (м³/ч)

 \dot{Q} = мощность кВт Δt_{w} = t_{WE} - t_{WA}

Расход воды w (м³/ч)

Секция охлаждения

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Секция охлаждения

Секция охлаждения длинная

L = 814

Тип	Подсоединен.	Объем
7	1 1/4"	3,6 л
8	1 1/2"	7,1 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

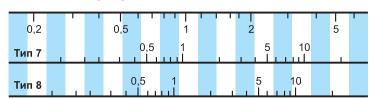
Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

∨ (M/		1,5 2 00		2,0 2 70		2,5 3 30		3,0 4 00		3,2 4 30	
PKW	t _{LE} °C	Q	t _l °C	Q	t _{l.A.} °C	Q	t _{LA} °C	Q	t _{LA} °C	Q	t _{LA} °C
	-0	кВт	-0	кВт О х		кВт ель тип		кВт	-0	кВт	-0
4/8	32	16,9	14,2	20,7	15,6	24,2	16,6	27,3	17,5	28,4	17,8
	28	14,2	13,4	17,4	14,5	20,2	15,4	22,8	16,1	23,8	16,3
	26	12,6	12,6	15,4	13,6	18,0	14,4	20,2	15,1	21,1	15,3
	25	11,8	12,2	14,5	13,2	16,8	14,0	18,9	14,6	19,8	14,8
5/10	32	15,2	15,2	18,6	16,5	21,7	17,5	24,4	18,3	25,5	18,6
	28	12,6	14,4	15,3	15,4	17,8	16,2	20,0	16,9	20,8	17,1
	26	11,0	13,6	13,4	14,5	15,5	15,3	17,4	15,9	18,2	16,1
	25	10,2	13,2	12,4	14,1	14,4	14,8	16,2	15,3	16,8	15,5
6/12	32	13,5	16,1	16,5	17,3	19,2	18,2	21,6	18,9	22,5	19,2
	28	10,9	15,2	13,2	16,2	15,3	16,9	17,2	17,5	17,9	17,8
	26	9,3	14,4	11,3	15,3	13,0	15,9	14,6	16,5	15,2	16,7
	25	8,5	14,0	10,3	14,8	11,9	15,4	13,4	15,9	13,9	16,1
8/12	32	13,5	16,2	16,5	17,3	19,3	18,1	21,8	18,8	22,8	19,1
	28	10,8	15,3	13,2	16,2	15,4	16,9	17,4	17,4	18,1	17,6
	26	9,2	14,4	11,2	15,2	13,1	15,9	14,8	16,4	15,4	16,5
	25	8,4	14,0	10,2	14,8	11,9	15,3	13,4	15,8	14,0	16,0
				Ox	ладит	ель тип	8				
4/8	32	23,8	7,3	30,4	8,6	36,5	9,5	42,2	10,3	44,3	10,5
	28	20,5	7,2	26,0	8,4	31,1	9,2	35,9	9,9	37,8	10,1
	26	18,3	7,0	23,2	8,1	27,8	8,8	32,0	9,4	33,7	9,6
	25	17,2	6,9	21,8	7,9	26,1	8,6	30,1	9,2	31,6	9,4
5/10	32	21,9	8,7	27,9	9,8	33,4	10,7	38,5	11,4	40,5	11,7
	28	18,5	8,6	23,5	9,6	28,1	10,4	32,3	11,0	33,9	11,3
	26	16,3	8,4	20,7	9,0	24,7	10,0	28,4	10,6	29,8	10,8
	25	15,2	8,3	19,3	8,9	23,0	9,8	26,4	10,3	27,8	10,5
6/12	32	20,0	10,1	25,3	10,8	30,2	11,8	34,8	12,5	36,6	12,7
	28	16,5	10,0	20,9	10,6	24,9	11,5	28,6	12,1	30,0	12,3
	26	14,3	9,8	18,0	10,4	21,5	10,8	24,7	11,6	25,9	11,8
	25	13,2	9,7	16,6	10,2	19,8	10,6	22,7	11,4	23,8	11,6
8/12	32	18,9	10,8	24,2	11,4	29,0	12,3	33,6	12,9	35,3	13,2
	28	15,6	10,7	19,8	11,2	23,7	12,0	27,4	12,5	28,8	12,7
	26	13,3	10,5	16,9	10,9	20,3	11,3	23,4	12,0	24,6	12,2
	25	12,2	10,4	15,5	10,8	18,5	11,1	21,4	11,8	22,5	11,9

Параметры вход. воздуха: 32°С / 40 % отн.вл., 28°С / 47 % отн.вл. 26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

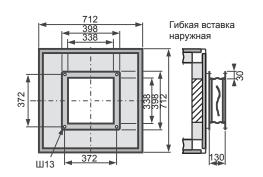

Другие рабочие значения по запросу

Падение давления воды (кПа)

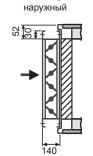
Расход воды $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$ (м³/ч)

 $\dot{\mathbf{Q}}$ = Мощность в кВт $\Delta \mathbf{t}_{\mathbf{w}}$ = $\mathbf{t}_{\mathbf{WE}}$ - $\mathbf{t}_{\mathbf{WA}}$

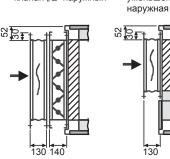
Расход воды w (м³/ч)

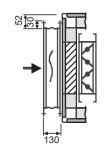





Возможные комбинации клапанов и гибких вставок

KG Top 43



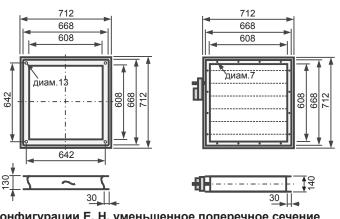

Гибкая вставка "Q" наружная. клапан "Q" наружный

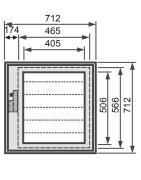
Гибкая вставка "Q" наружная, клапан внутренний

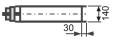
Гибкая вставка

уменьшенная

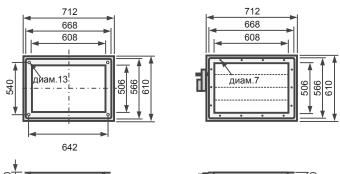
Возмжные конфигурации

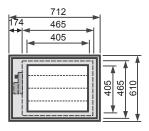

Гибкая вставка наружная

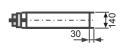

Клапан наружный


Клапан внутренний

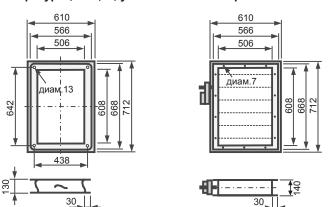
Привод клапана Wolf устанавливается на клапане со стороны обслуживания


Конфигурация Q, полное поперечное сечение





Конфигурации Е, Н, уменьшенное поперечное сечение



610

363

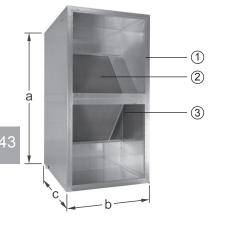
303

Конфигурации А, D, уменьшенное поперечное сечение

Крутящий момент 1-го клапана согл. EN 1751 KL1: 3 Hм, согл. EN 1751 KL2: 5 Hм

566

Рекуперация тепла


KG Top 43

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

3 Внутренний байпас (по запросу)

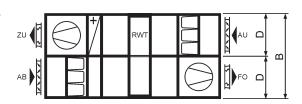
Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

Типоразмер	Расход возд без байпаса	цуха Ѷ [м³/ч] с байпасом	a a	азмеры [мі	м] С	Вес [кг]	Подсоединение отвода конденсата
KGXD 43	4300	3200	1424	712	1220	215	1 1/4"

Описание RWT

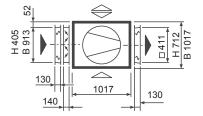
RWT Потоки воздуха горизонтально/вертикально

Размеры (мм)

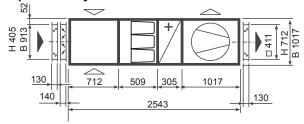

Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному

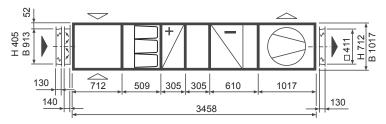
- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

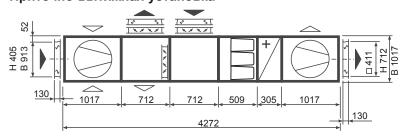
KG	Α	В	С	D	E	F	G
43	1017	1424	712	712	509	406	400

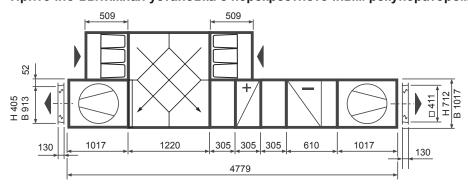


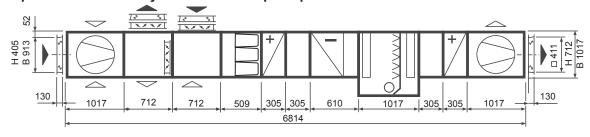
Вид сверху

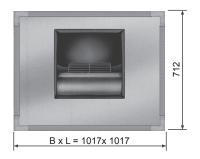



Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором

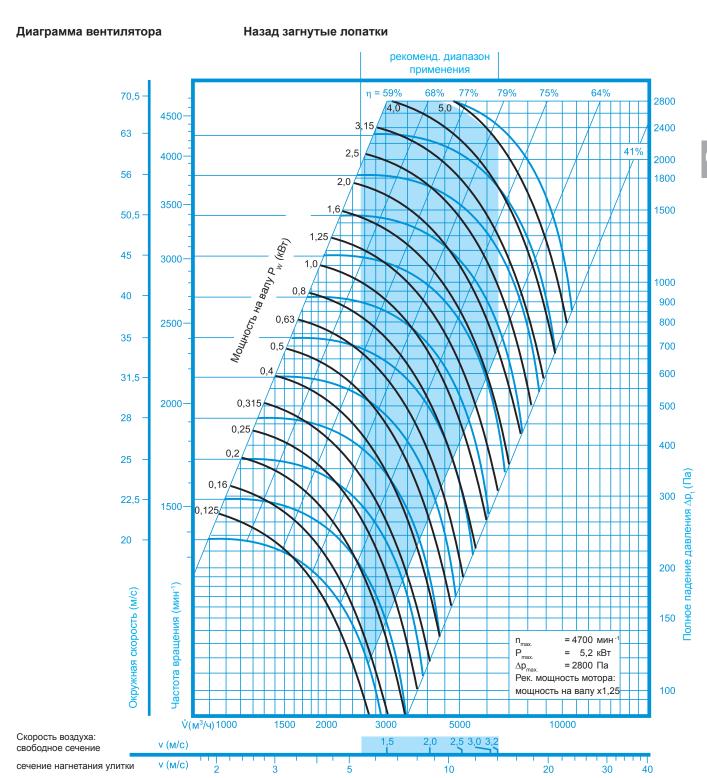
Приточно-вытяжная установка с камерой орошения

Диаграмма вентилятора Вперед загнутые лопатки рекоменд. диапазон Частота вращения (мин⁻1 применения Окружная скорость (м/с) 60% 65% $\eta = 49\%$ 2600 5,0 / 8,0 10,0 6,3 4,0 2000 3,15 37 2,5 1500 33 2200-2,0 1,6 29,4 2000 1000 26,2 1800 900 1,0 800 0,8 23,3 1600 700 0,63 600 20,8 1400-500 18,5 1200-0,315 400 16,5 0,25 0,2 300 14,7 1000давления ∆р, 0,16 900-13 200 800 Полное падение 11,7 150 10,4 700-=2150 мин -1 = 4,5 кВт = 1400 Па Δp_{max} 9,3 Рек. мощность мотора: мощность на валу х 1,25 100 **У**(м³/ч) 10000 15000 Скорость воздуха: v (M/C) свободное сечение

20

сечение нагнетания улитки

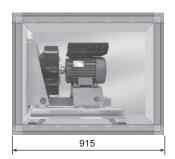
v (M/C)

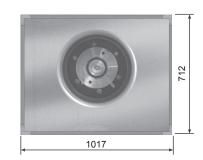

Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется


Ревизионная дверь: слева, справа или сверху, снизу по запросу



Прямоприводной вентилятор

KG Top 64

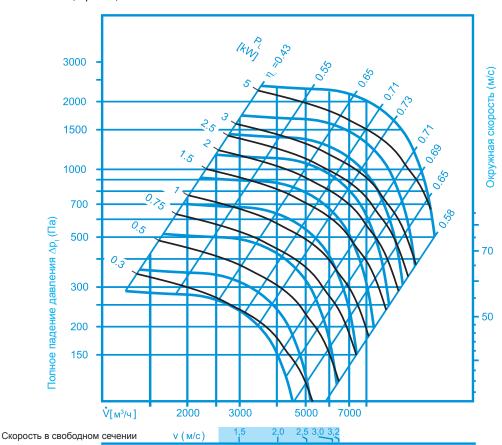
Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.

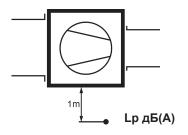

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Типоразмер KG	Расход воздуха	Полное падение	Стандартные данные* электродвигателя		
		давления	мощность	частота вращ.	ток
	м ³ /ч	Па	кВт	МИН ⁻¹	Α
KG	6300	500	2,2	1500	5,2
64		1000	3,0	1500	6,8
		1500	5,5	3000	11,3

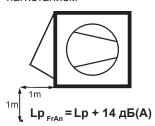
^{*} Скорость вентилятора при частоте (f \geq 50Гц)

Диаграмма вентилятора Диаметр колеса 450 мм Точные данные вентилятора могут быть получены только в заказной спецификации!

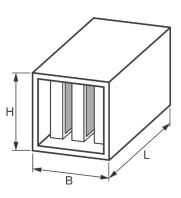

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

 $L_{_{w}}[дБ]$ = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.


			Полное падение давления ∆р [Па]								
	L _w	500	750	1000	1250	1500	2000				
٦]	3.000	89	92	95	97	98	101				
[M3/4]	4.500	90	94	96	98	100	102				
>	6.300	92	95	98	100	101	104				

Уровень звукового давления Lр дБ(A)



Уровень звукового давления Lр дБ(A)

Со свободным всасыванием или нагнетанием

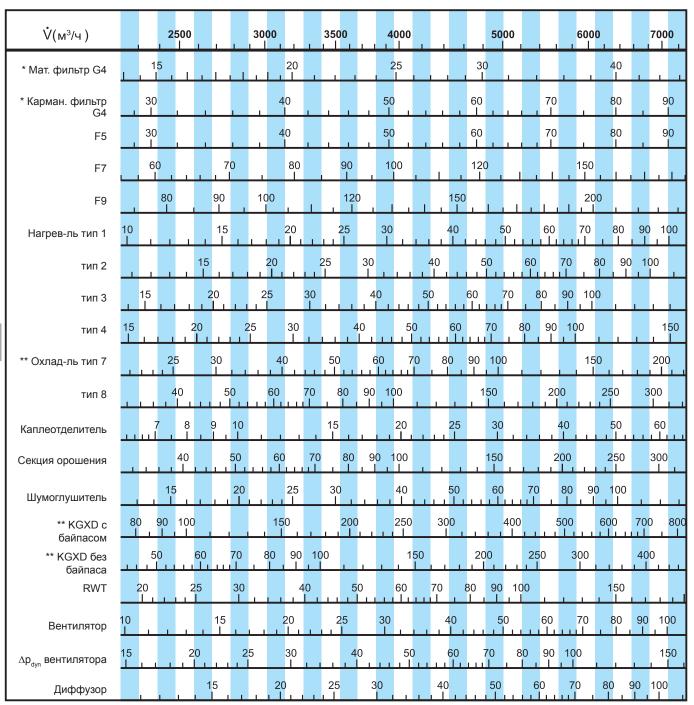
Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

		E	Зперед з	агнутые	лопатки				
Ů	n	Lp	Ů	n	Lp	Ů	n	Lp	
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	
	800	37		900	44		1000	51	
3.000	1000	41	4.500	1120	45	6.300	1250	52	
	1250	46		1400	48		1600	53	
	1600	51		1600 53		2000	56		
Назад загнутые лопатки									
Ů	n	Lp	Ů.	n	Lp	Ý	n	Lp	
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	мин ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	
	2000	47		2000	44	6.300	2800	52	
3.000	2500	53	4.500	2500	52		3150	56	
	3150	59		3150	57		3500	59	
	4000	65		4000	63		4000	62	
	Пр	ямоприв	одной в	ентилято	р, диаме	тр 355 м	М		
V	n	Lp	V	n	Lp	Ÿ	n	Lp	
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	
	1900	47		2100	49		2375	50	
2.000	2350	51	3.000	2500	52	4.000	2750	54	
	2650	53		2750	55		2900	56	
	3300	57		3300	58		3400	60	

Размеры (мм)

Шум


Высота Н	Ширина В	Длина L					
		Тип 11	Тип 12	Тип 13	Тип 14		
712	1017	915	1119	1424	1627		

Погашение De дБ(А)

- 1						(=)						
			Октавная полоса (Гц)									
١	Тип	63	125	250	500	1000	2000	4000	8000			
1	11	4	8	18	20	23	17	14	14			
	12	5	10	22	24	28	20	15	15			
	13	8	14	29	31	36	25	17	17			
١	14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей De = De, + De, - 3 дБ(A)

* Расчет: начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

** Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем			
1	3/4"	3,0 л			
2	3/4"	3,0 л			
3	1"	4,5 л			
4	1"	4,5 л			

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

Стальной оцинкованный нагреватель

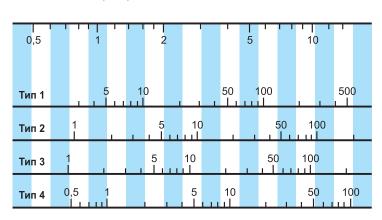
Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.


Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

. ф = мощность кВт

$$\Delta t_{w} = t_{WE} - t_{WA}$$

Расход воды w (м³/ч)

Секция охлаждения

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Секция охлаждения

Секция охлаждения длинная

L = 814

ı	Тип	Подсоединен.	Объем
	7	1 1/4"	7,3 л
	8	1 1/2"	11,7 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

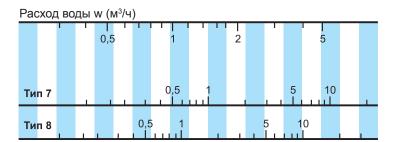
Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (м/ У (м ³	,	1,5 3 00		2,0 4 00		2,5 5 00		3,0 6 00		3,2 6 40	
PKW	t _{LE}	Q	t _{LA}	Q	t _{∟A}						
	°C	кВт	°C								
				Ox	ладит	ель тип	7				
4/8	32	27,4	13,1	33,8	14,5	39,6	15,5	44,9	16,4	46,9	16,7
	28	23,3	12,3	28,6	13,5	33,4	14,4	37,8	15,1	39,5	15,4
	26	20,7	11,7	25,5	12,7	29,8	13,5	33,7	14,2	35,2	14,4
	25	19,5	11,3	24,0	12,3	28,0	13,1	31,7	13,7	33,1	14,0
5/10	32	25,0	14,1	30,8	15,4	36,0	16,4	40,8	17,2	42,6	17,5
	28	20,9	13,4	25,6	14,4	29,8	15,3	33,7	16,0	35,2	16,2
	26	18,3	12,7	22,5	13,6	26,2	14,4	29,6	15,0	30,9	15,2
	25	17,1	12,3	21,0	13,2	24,4	13,9	27,6	14,5	28,8	14,7
6/12	32	22,6	15,1	27,8	16,3	32,4	17,2	36,6	18,0	38,2	18,2
	28	18,4	14,3	22,5	15,3	26,3	16,1	29,6	16,7	30,9	16,9
	26	15,9	13,6	19,5	14,5	22,6	15,2	25,5	15,7	26,6	15,9
	25	14,6	13,2	17,9	14,0	20,8	14,7	23,5	15,2	24,5	15,4
8/12	32	22,0	15,3	27,2	16,4	31,9	17,3	36,2	18,0	37,8	18,3
	28	17,8	14,5	22,0	15,4	25,7	16,1	29,1	16,7	30,4	16,9
	26	15,3	13,8	18,9	14,6	22,1	15,2	25,0	15,7	26,1	15,9
	25	14,0	13,4	17,3	14,1	20,2	14,7	22,9	15,2	23,9	15,4
				Ox	ладит	ель тип	8				
4/8	32	36,5	6,9	46,7	8,1	56,1	9,0	65,1	9,7	68,5	10,0
	28	31,4	6,8	40,0	8,0	48,0	8,7	55,6	9,4	58,4	9,6
	26	28,0	6,7	35,7	7,3	42,9	8,4	49,6	9,0	52,1	9,2
	25	26,3	6,6	33,5	7,2	40,3	8,2	46,6	8,7	49,0	9,0
5/10	32	33,7	8,3	42,9	9,0	51,5	10,2	59,6	10,9	62,8	11,1
	28	28,5	8,3	36,2	8,9	43,4	9,9	50,1	10,5	52,7	10,8
	26	25,1	8,1	31,9	8,7	38,2	9,6	44,1	10,1	46,3	10,3
	25	23,4	8,0	29,7	8,5	35,6	9,0	41,1	9,9	43,2	10,1
6/12	32	30,7	9,8	39,0	10,4	46,8	11,0	54,1	12,0	56,8	12,2
	28	25,5	9,7	32,3	10,3	38,6	10,8	44,5	11,7	46,7	11,9
	26	22,1	9,5	28,0	10,1	33,4	10,5	38,4	11,2	40,4	11,4
	25	20,4	9,5	25,8	9,9	30,8	10,3	35,4	10,7	37,2	11,2
8/12	32	29,0	10,6	37,1	11,1	44,7	11,9	51,9	12,5	54,6	12,7
	28	23,9	10,4	30,5	10,9	36,6	11,6	42,4	12,1	44,6	12,3
	26	20,4	10,3	26,1	10,7	31,3	11,0	36,3	11,7	38,2	11,8
	25	18,7	10,2	23,9	10,6	28,7	10,9	33,2	11,2	34,9	11,6

Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл.

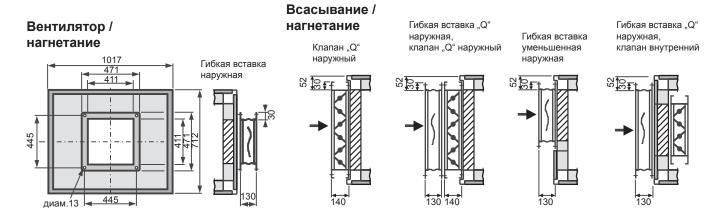
26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

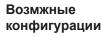

Другие рабочие значения по запросу

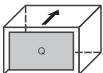
Падение давления воды (кПа)

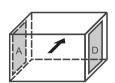
 $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{W}} \quad (M^{3}/4)$ Расход воды

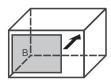
Q = Мощность в кВт

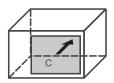

 $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$

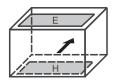


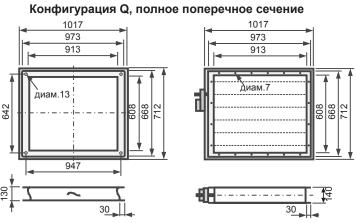


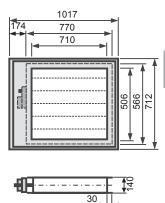

Возможные комбинации клапанов и гибких вставок


KG Top 64





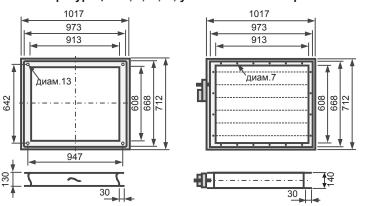



Гибкая вставка наружная

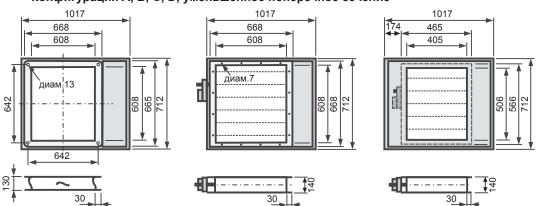
Клапан наружный

Клапан внутренний

Привод клапана Wolf устанавливается на клапане со стороны обслуживания



1017

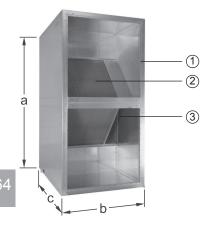

770

999

Конфигурации А, В, С, D, уменьшенное поперечное сечение

Крутящий момент 1-го клапана согл. EN 1751 KL1: 4 Hм, согл. EN 1751 KL2: 6 Hм

Рекуперация тепла


KG Top 64

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

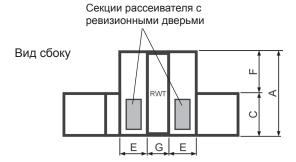
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

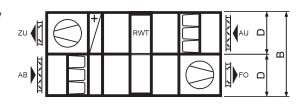
Типоразмер	Расход возд без	духа Ѷ [м³/ч]	P	азмеры [м	м]	Вес [кг]	Подсоединение	
	байпаса	с байпасом	а	b	С		отвода конденсата	
KGXD 64	6400	4800	1424	1017	1220	315	1 1/4"	

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

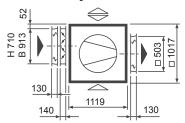


Размеры (мм)

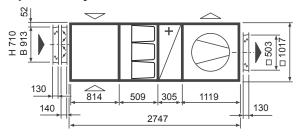

Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному

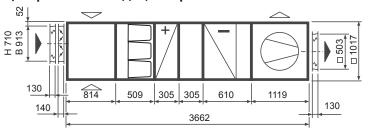
- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

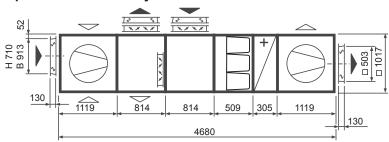
KG	Α	В	С	D	Е	F	G
64	1322	2034	712	1017	509	610	400

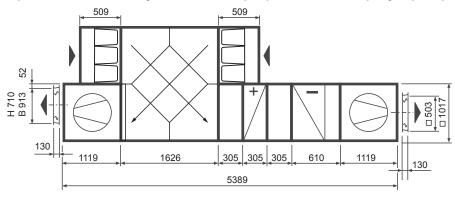


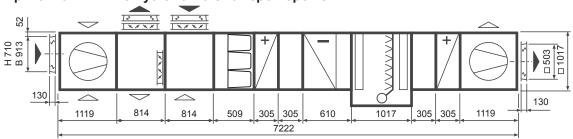
Вид сверху

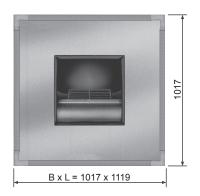



Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором

Приточно-вытяжная установка с камерой орошения

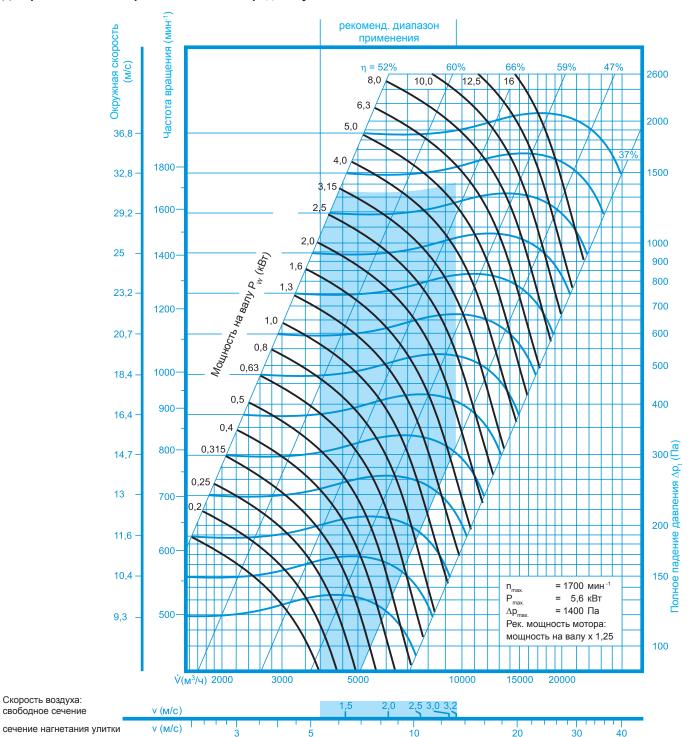
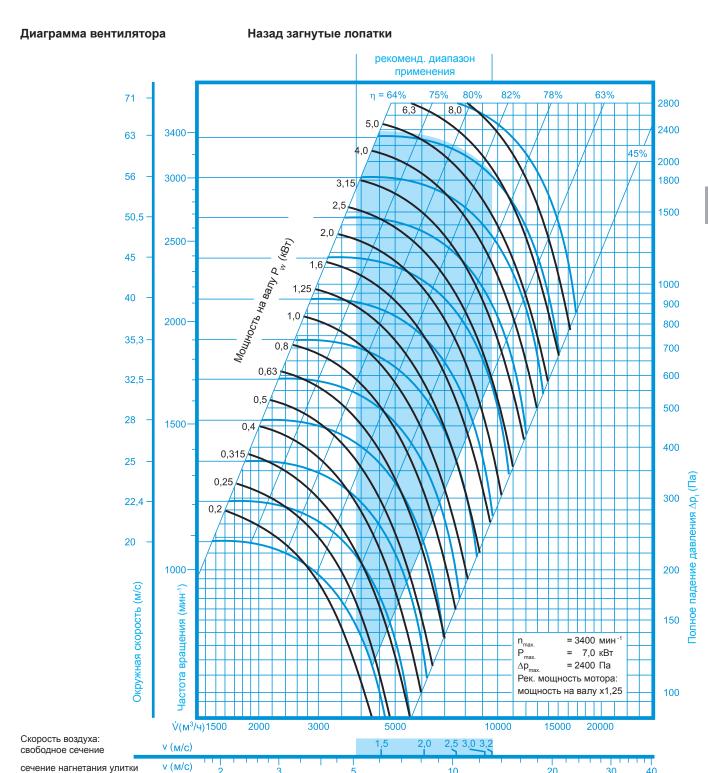


Диаграмма вентилятора

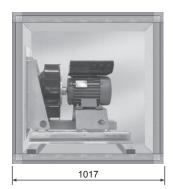
Вперед загнутые лопатки

Скорость воздуха: свободное сечение


Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,


внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Прямоприводной вентилятор

Свободный напор

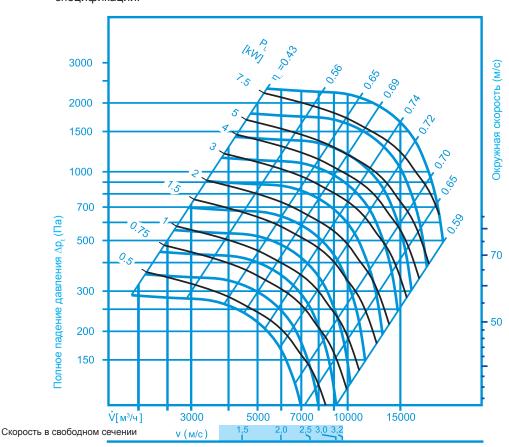
Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

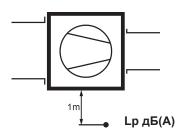

Не требуется учитывать динамическое давление для расчетов.

Типоразмер КG	Расход воздуха	Полное падение	Стандартные данные* электродвигателя		
	м³/ч	давления Па	мощность кВт	частота вращ. мин ⁻¹	ток А
KG 96	10000	500 1000 1500	3,0 5,5 7,5	1500 1500 1500	6,8 11,4 15,4

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

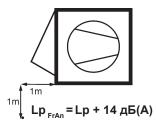
Диаграмма вентилятора Диаметр колеса 560 мм

Точные данные вентилятора могут быть получены только в заказной спецификации!

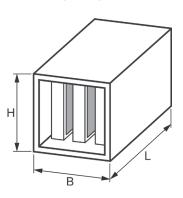

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

 ${\sf L}_{\sf w}\,[{\sf д}{\sf E}]$ = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.


		Полное падение давления ∆р [Па]							
	L _w	500	750	1000	1250	1500	2000		
[-]	5.000	91	94	97	99	101	103		
[M ³ / ⁴]	7.500	92	96	98	100	102	104		
>	10.000	94	98	100	102	104	106		

Уровень звукового давления Lр дБ(A)



Уровень звукового давления Lp дБ(A)

Со свободным всасыванием или нагнетанием

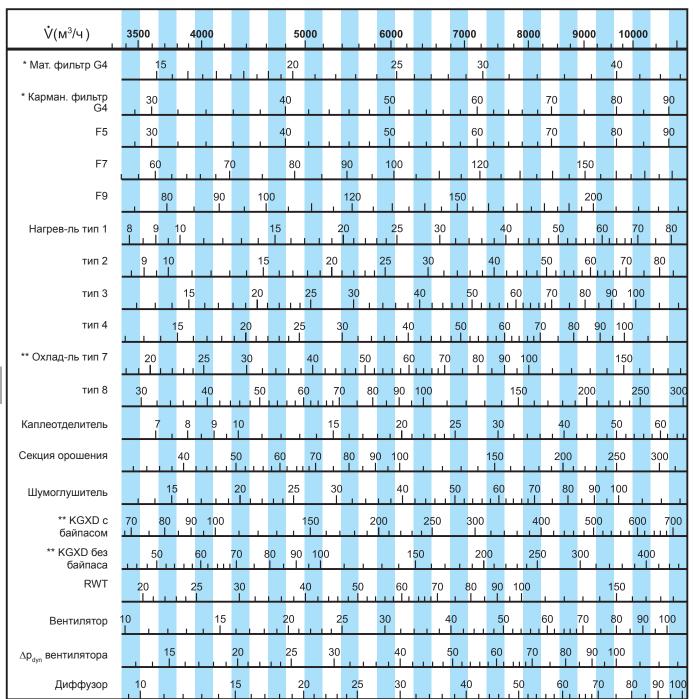
Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

		E	Зперед з	агнутые .	лопатки					
Ý	n	Lp	v	n	Lp	V	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	М ³ /Ч	МИН ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)		
	630	38		7100	45		800	52		
5.000	860	42	7.500	900	46	10.000	1000	52		
	1000	46		1120	49		1250	53		
	1250	51		1400	54		1600	57		
Назад загнутые лопатки										
Ů	n	Lp	Ý	n	Lp	Ý	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)		
	1400	45		1800	50		2250	53		
5.000	1800	51	7.500	2240	55	10.000	2500	558		
	2240	57		2800	61		2800	60		
	2800	63		3150	64		3150	62		
	Пр	ямоприв	одной в	ентилято	р, диаме	тр 560 м	М			
Ý	n	Lp	V	n	Lp	V	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)		
	1000	51		1350	52		2000	54		
5.000	1500	54	7.500	1550	56	10.000	2100	58		
5.500	1700	57		1700	58		2250	60		
	2100	61		2100	62	1	2400	64		

Размеры (мм)

Шум


Высота Н	Ширина В	Длина L						
		Тип 11	Тип 12	Тип 13	Тип 14			
1017	1017	915	1119	1424	1627			

Погашение De дБ(А)

		Октавная полоса (Гц)										
	Тип	63	125	250	500	1000	2000	4000	8000			
1	11	4	8	18	20	23	17	14	14			
	12	5	10	22	24	28	20	15	15			
	13	8	14	29	31	36	25	17	17			
١	14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей De = De $_1$ + De $_2$ - 3 дБ(A)

* Расчет: начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

** Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	1 1/4"	4,7 л
2	1 1/4"	4,7 л
3	1 1/2"	7,1 л
4	1 1/2"	7,1 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

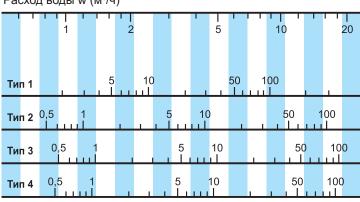
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

 $\dot{\mathbf{Q}}$ = мощность кВт $\Delta \mathbf{t}_{\mathrm{w}}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

Расход воды w (м³/ч)

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Секция охлаждения L = 610 Секция охлаждения длинная

L = 814

Тип	Подсоединен.	Объем		
7	2"	11,7 л		
8	2"	18,6 л		

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

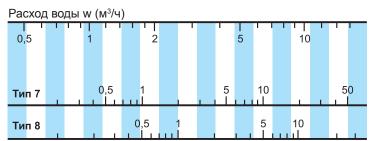
Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M.	/c)	1,5		2,0		2,5		3,0		3,2	
У (м	³/ч)	4 50	0	6 00	0	7 50	0	9 00		9 60	0
PKW	t ^r E C	Q кВт	t _{∟A} °C	Q кВт	t _{LA} °C						
		KD1				ель тип		ND1		KBT	
	32	44,7	11,5	55,6	12,8	65,5	13,8	74,6	14,7	78,0	15,0
4/8	28	37,9	10,9	47,1	12,1	55,3	12,9	62,9	13,7	65,7	14,0
	26	33,8	10,4	41,9	11,4	49,2	12,2	56,0	12,9	58,5	13,1
	25	31,7	10,1	39,3	11,1	46,2	11,9	52,5	12,5	54,9	12,7
	32	40,7	12,6	50,5	13,8	59,4	14,8	67,5	15,6	70,6	15,9
5/10	28	33,9	12,1	42,0	13,1	49,2	14,0	55,9	14,6	58,4	14,9
3/10	26	29,8	11,5	36,8	12,4	43,2	13,2	49,0	13,8	51,2	14,1
	25	27,7	11,2	34,2	12,1	40,1	12,8	45,5	13,4	47,6	13,6
	32	36,6	13,6	45,3	14,8	53,2	15,7	60,4	16,5	63,2	16,7
6/12	28	29,8	13,1	36,8	14,1	43,1	14,9	48,8	15,5	51,0	15,7
	26	25,6	12,5	31,6	13,4	37,0	14,1	41,9	14,6	43,8	14,8
	25	23,5	12,2	29,0	13,0	33,9	13,7	38,4	14,2	40,2	14,4
	32	35,6	13,9	44,4	15,0	52,4	15,8	59,7	16,5	62,5	16,8
8/12	28	28,9	13,4	35,9	14,2	42,2	14,9	48,1	15,5	50,3	15,8
	26	24,7	12,8	30,6	13,5	36,1	14,2	41,0	14,7	42,9	14,9
	25	22,5	12,5	28,0	13,2	33,0	13,8	37,5	14,3	39,3	14,4
						ель тип					
	32	55,7	6,6	71,5	7,3	86,3	8,5	100,2	9,2	105,6	9,4
4/8	28	48,0	6,5	61,4	7,2	73,9	8,3	85,7	8,9	90,3	9,1
""	26	42,8	6,4	54,8	7,0	66,0	7,9	76,5	8,5	80,5	8,7
	25	40,3	6,3	51,5	6,9	62,0	7,8	71,9	8,3	75,7	8,5
	32	51,5	8,0	65,9	8,7	79,4	9,7	92,0	10,3	96,9	10,6
5/10	28 26	43,7 38,5	7,9	55,7	8,6 8,4	67,0 59,0	9,5	77,5 68,2	10,1	81,5 71,8	10,3
	25	35,9	7,8 7,8	49,1 45,8	8,3	55,0	8,8 8,7	63,6	9,7 9,5	66,9	9,9 9,7
				,						,	
	32 28	47,0 39,2	9,4 9,4	60,0 49,8	10,1 10,0	72,2 59,7	10,6 10,4	83,6 69,0	11,4 11,2	88,0 72,5	11,7 11,4
6/12	26	34,0	9,4	49,6 43,1	9,8	59,7 51,7	10,4	59,0 59,6	10,5	62,7	10,7
	25	31,3	9,2	39,8	9,7	47,6	10,2	55,0	10,3	57,8	10,7
	32	44,3	10,3	56,9	10,8	68,7	11,2	79,9	12,1	84,2	12,3
	28	36,5	10,3	46,8	10,8	56,3	11,0	65,4	11,8	68,9	11,9
8/12	26	31,3	10,2	40,1	10,7	48,3	10,8	56,0	11,1	59,0	11,2
	25	28,7	10,0	36,7	10,4	44,2	10,7	51,3	11,0	54,0	11,1

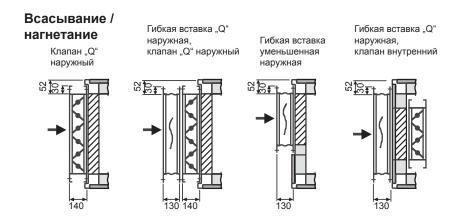

Параметры вход. воздуха: 32° С / 40 % отн.вл., 28° С / 47 % отн.вл. 26° С / 49 % отн.вл., 25° С / 50 %отн.вл.

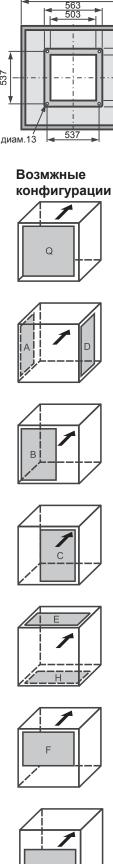
Другие рабочие значения по запросу

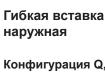
Падение давления воды (кПа)

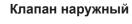
Расход воды $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{w}}$ (м³/ч)

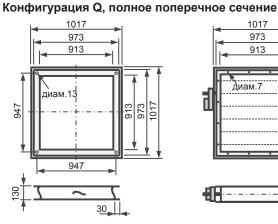
 $\dot{\mathbf{Q}}$ = Мощность в кВт $\Delta \mathbf{t}_{w}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

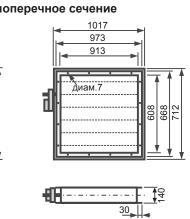


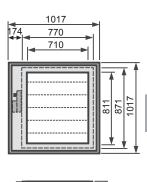


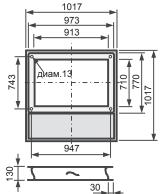

Возможные комбинации клапанов и гибких вставок

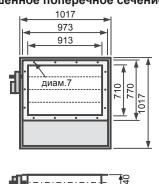

KG Top 96

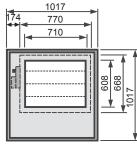


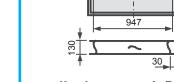


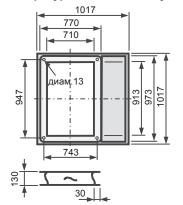


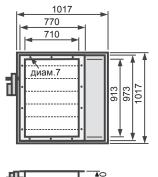

Клапан внутренний Привод клапана Wolf устанавливается на клапане со стороны обслуживания

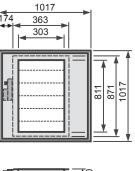


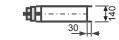






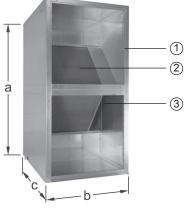






Конфигурации А, В, С, D, уменьшенное поперечное сечение

Крутящий момент 1-го клапана согл. EN 1751 KL1: 5 Hм, согл. EN 1751 KL2: 7 Hм


Рекуперация тепла

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

Потоки холодного и теплого воздуха направлены перекрестно.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

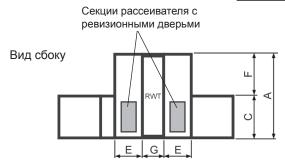
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

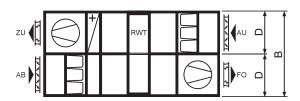
Типоразмер	без с байпаса байпасом		P a	азмеры [мі b	м]	Вес [кг]	Подсоединение отвода конденсата
KGXD 96	9600	7800	2034	1017	1627	520	1 1/4"

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

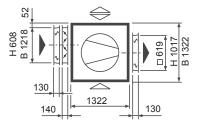


Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

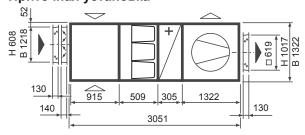

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

KG	А	В	С	D	Е	F	G
96	1627	2034	1017	1017	509	610	400

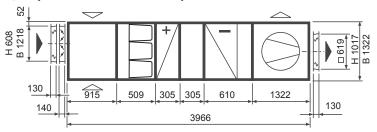
Размеры (мм)

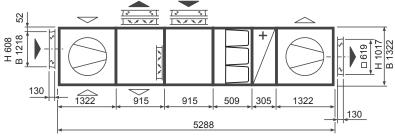


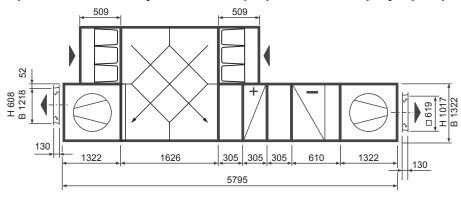
Вид сверху

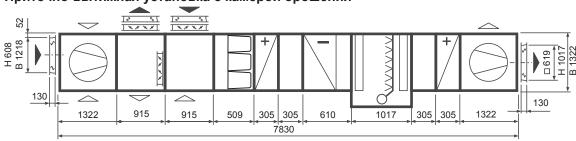


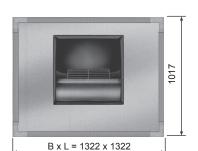
Центральный кондиционер

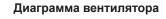

Вытяжная установка


Приточная установка

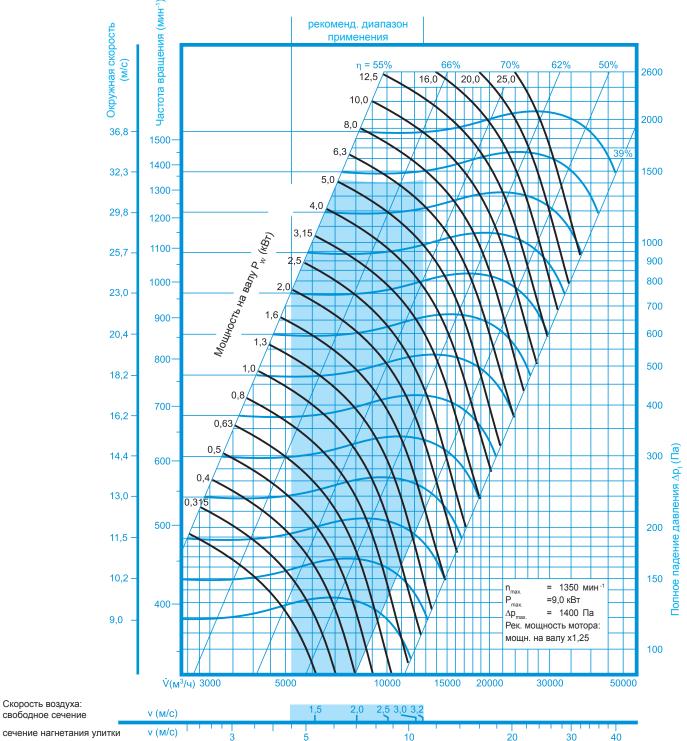

Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором



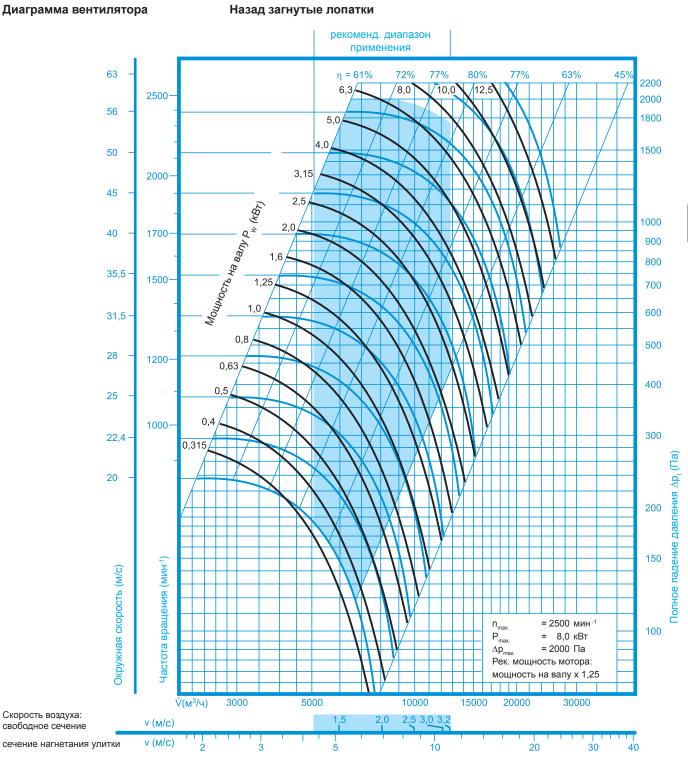
Приточно-вытяжная установка с камерой орошения



Вперед загнутые лопатки

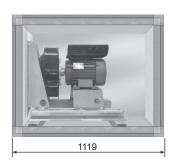
Скорость воздуха:

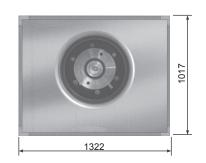
свободное сечение


Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,


внутренний клапан не используется


Ревизионная дверь: слева, справа или сверху, снизу по запросу

Прямоприводной вентилятор

KG Top 130

Свободный напор

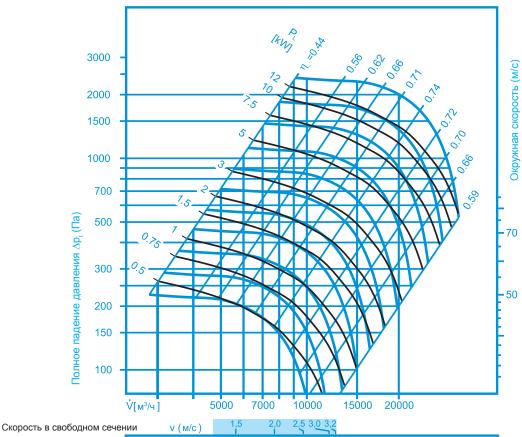
Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

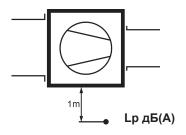

Не требуется учитывать динамическое давление для расчетов.

Типоразмер KG	воздуха	Полное падение давления	Стандартные данные* электродвигателя мощность частота вращ ток			
	м ³ /ч	Па	кВт	МИН ⁻¹	Α	
KG 130	16000	500 1000 1500	4,0 7,5 15,0	1000 1500 1500	9,7 15,4 28,5	

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

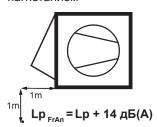
Диаграмма вентилятора Диаметр колеса 710 мм

Точные данные вентилятора могут быть получены только в заказной спецификации!

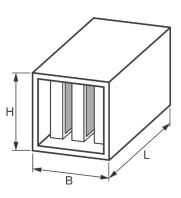

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

 ${\sf L}_{\sf w}\,[{\sf д}{\sf E}]$ = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.


			Полное падение давления ∆р [Па]								
	L _w	500	750	1000	1250	1500	2000				
[۳/	8.000	93	97	99	101	103	105				
[M3/4]	12.000	95	98	101	103	104	106				
>	16.000	96	100	102	104	106	108				

Уровень звукового давления Lp дБ(A)



Уровень звукового давления Lp дБ(A)

Со свободным всасыванием или нагнетанием

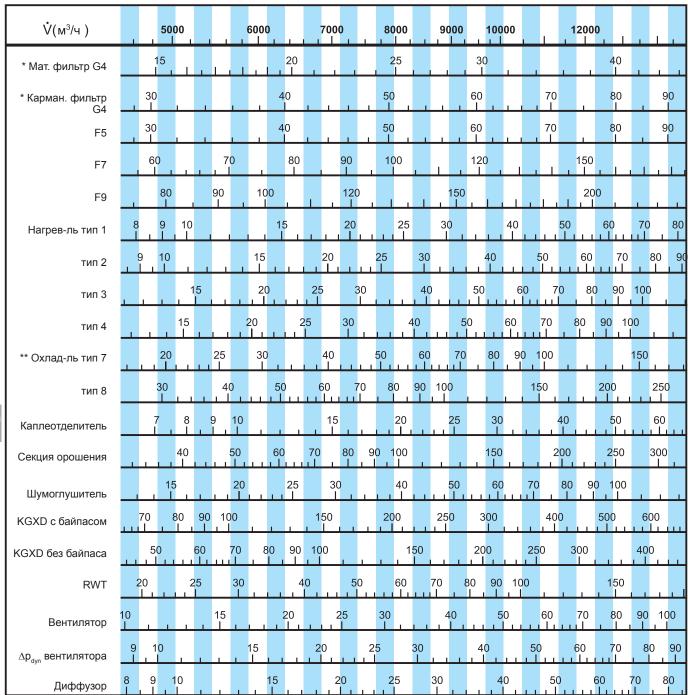
Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

		I	Зперед з	агнутые	лопатки			
V	n	Lp	Ů	n	Lp	Ý	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	500	37		560	45		630	51
8.000	630	41	12.000	710	46	16.000	800	51
	800	46	12.000	900	49		1000	52
	1000	51		1120	53		1250	56
			Назад за	гнутые л	опатки			
Ů	n	Lp	Ý	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	1000	45		1400	49		1600	45
8.000	1250	47	12.000	1600	52	16.000	1800	53
	1600	53	12.000	1800	55		2000	57
	2000	59		2240	60		2240	60
	Пр	ямоприв	водной в	ентилято	р, диам	етр 560 м	М	
Ů	n	Lp	V	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	1000	51		1350	52		2000	54
5.000	1500	54	7.500	1550	56	10.000	2100	58
3.000	1700	57	7.500	1700	58	1 10.000	2250	60
	2100	61		2100	62	1	2400	64

Размеры (мм)

Шум


Высота Н	Ширина В	Длина L							
		Тип 11	Тип 12	Тип 13	Тип 14				
1017	1322	915	1119	1424	1627				

Погашение De дБ(А)

		Октавная полоса (Гц)										
Тур	63	125	250	500	1000	2000	4000	8000				
11	4	8	18	20	23	17	14	14				
12	5	10	22	24	28	20	15	15				
13	8	14	29	31	36	25	17	17				
14	9	16	33	35	41	28	19	19				

Для 2 подсоединенных шумоглушителей De = De, + De, - 3 дБ(A)

* Расчет:

— начальное пад. давл. + конечное пад давл.
2

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

** Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше $2,0\,$ м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем	
1	1 1/4"	6,6 л	
2	1 1/4"	6,6 л	
3	1 1/2"	9,8 л	
4	1 1/2"	9,8 л	

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

Стальной оцинкованный нагреватель

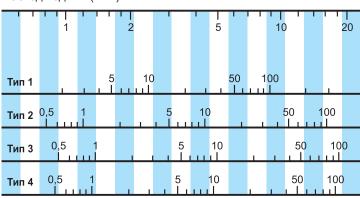
Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.


Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

 \dot{Q} = мощность кВт

$$\Delta t_{w} = t_{WE} - t_{WA}$$

Расход воды w (м³/ч)

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

7	`	•
1017	•	No.
_	,	L

Секция охлаждения L = 610

Секция охлаждения длинная L = 814

	Тип	Подсоединен.	Объем
Γ	7	2"	16,4 л
	8	2"	26,2 л

130 Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

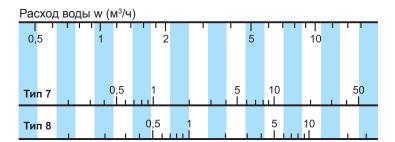
Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M	(c)	1,5		2,0		2,5		3,0		3,2	
У (м ³	·/ч)	6 00		8 00		10 00		12 00	00	12 80	00
PKW	t _{∟∈} °C	Q кВт	t _{∟A} °C	Q кВт	t _{∟A} °C	Q кВт	t _{la} °C	Q кВт	t _{∟A} °C	Q кВт	t _{LA} °C
	C	KDI	C			кот ель тип		KDI	C	KDI	C
	32 62,0 10,7 77,5 11,9 91,7 12,9 104,7 13,8 109,7 14,1										
4/8	28	52,7	10,7	65,7	11,3	77,5	12,3	88,4	12,9	92,5	13,2
4/0	26	47,0	9,8	58,5	10,7	69,0	11,5	78,7	12,2	82,4	12,5
	25	44,1	9,5	54,9	10,5	64,8	11,2	73,9	11,9	77,3	12,1
	32	56,5	11,8	70,5	13,0	83,2	14,0	94,9	14,8	99,4	15,1
5/10	28	47,2	11,4	58,7	12,4	69,1	13,3	78,7	14,0	82,3	14,2
	26	41,4	10,9	51,5	11,8	60,6	12,6	69,0	13,2	72,1	13,4
	25	38,6	10,7	47,9	11,5	56,3	12,2	64,1	12,8	67,1	13,0
	32	50,9	12,9	63,3	14,0	74,6	14,9	85,0	15,7	88,9	16,0
6/12	28 26	41,6 35,8	12,5 12,0	51,5 44,3	13,4 12,8	60,5 52,0	14,2 13,5	68,8 59,1	14,8 14,1	71,9 61,7	15,1 14,3
	25	32,9	11,7	40,7	12,5	47,7	13,1	54,2	13,7	56,7	13,9
	32	49,4	13,3	61,9	14,3	73,2	15,1	83,7	15,8	87,7	16,1
8/12	28	40,1	12,8	50,0	13,7	59,1	14,4	67,5	14,9	70,7	15,2
0/12	26	34,2	12,3	42,7	13,0	50,5	13,6	57,6	14,2	60,3	14,3
	25	31,3	12,0	39,0	12,7	46,1	13,3	52,6	13,8	55,1	13,9
				Ox	ладит	ель тип	8				
	32	75,0	6,4	96,5	7,1	116,6	8,2	135,6	8,9	143,0	9,1
4/8	28	64,7	6,3	83,0	7,0	100,0	8,0	116,1	8,6	122,3	8,9
7/0	26	57,8	6,2	74,1	6,8	89,3	7,7	103,7	8,3	109,2	8,5
	25	54,4	6,1	69,7	6,7	84,0	7,1	97,5	8,1	102,7	8,3
	32	69,5	7,8	89,1	8,4	107,5	9,0	124,8	10,1	131,5	10,3
5/10	28 26	59,1 52,1	7,7 7,6	75,5 66,6	8,4 8,2	90,8 80,1	8,9 8,6	105,2 92,8	9,8 9,4	110,8 97,6	10,0 9,6
	25	48,7	7,6	62,1	8,1	74,7	8,5	86,5	9,3	91,1	9,5
	32	63,6	9,2	81,4	9,8	98,0	10,4	113,6	11,2	119,6	11,4
0/40	28	53,1	9,2	67,7	9,7	81,2	10,4	94,0	10,6	98,8	11,2
6/12	26	46,1	9,1	58,7	9,6	70,4	10,0	81,4	10,3	85,6	10,5
	25	42,6	9,0	54,2	9,5	65,0	9,9	75,1	10,2	79,0	10,3
	32	59,7	10,2	76,8	10,6	93,0	11,1	108,2	11,8	114,1	12,0
8/12	28	49,3	10,1	63,3	10,5	76,4	10,9	88,7	11,6	93,5	11,7
0/12	26	42,3	10,0	54,3	10,3	65,5	10,7	76,1	10,9	80,1	11,0
Попомо	25	38,8	9,9	49,7	10,3	60,0	10,5	69,7	10,8	73,5	10,9

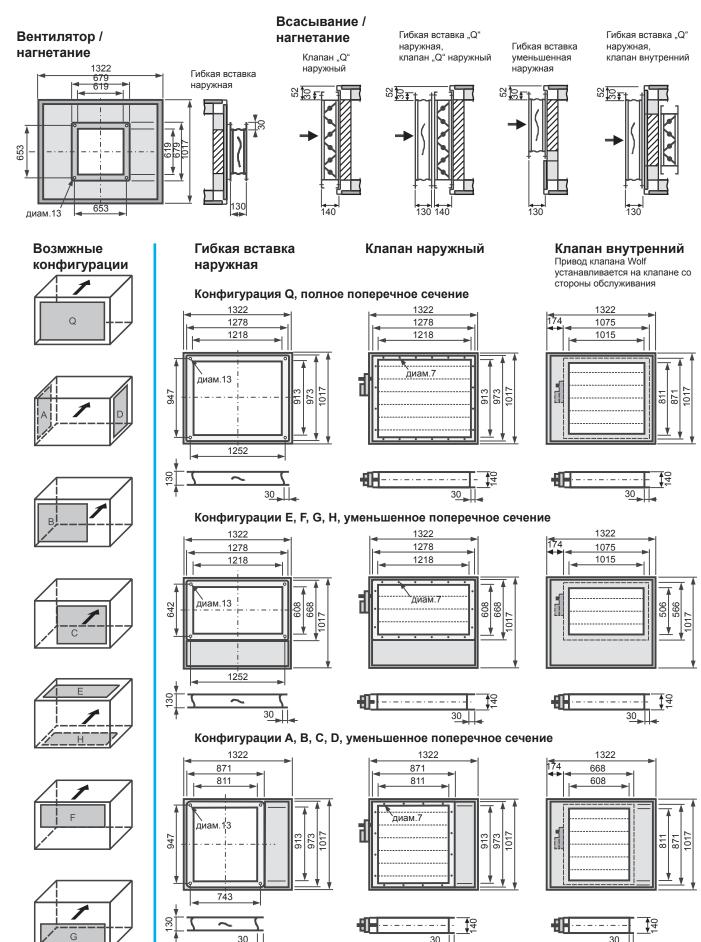
Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл.


 26°C / 49 % отн.вл., 25°C / 50 %отн.вл.

Другие рабочие значения по запросу

Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{w}}$$
 (м³/ч)


 $\dot{\mathbf{Q}}$ = Мощность в кВт $\Delta \mathbf{t}_{w}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

Возможные комбинации клапанов и гибких вставок

KG Top 130

Крутящий момент 1-го клапана согл. EN 1751 KL1: 6 Hм, согл. EN 1751 KL2: 8 Hм

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха

полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

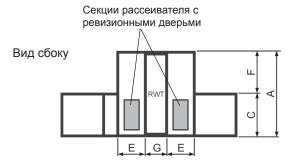
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

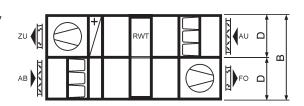
т	ипоразмер	Расход воздуха V [м³/ч] без с байпаса байпасом		a a	азмеры [мі	м]	Вес [кг]	Подсоединение отвода конденсата
H	KGXD 130	13000	10500	2034	1322	1627	719	1 ¹ /4"

Описание RWT

RWT Потоки воздуха горизонтально/вертикально



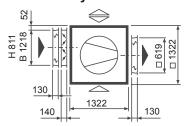
Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.


- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

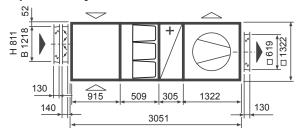
KG	Α	В	С	D	Е	F	G
130	1830	2644	1017	1322	509	813	400

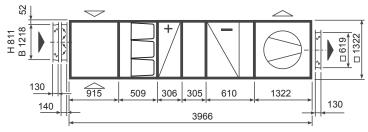
Размеры (мм)

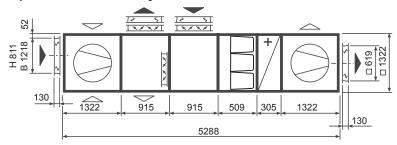
Вид сверху

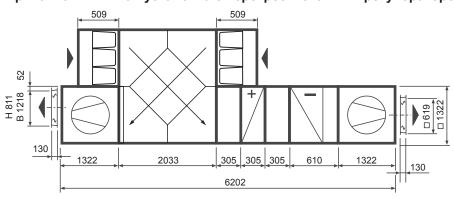


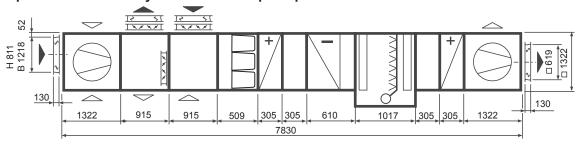
130

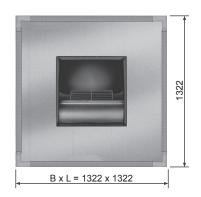

Центральный кондиционер

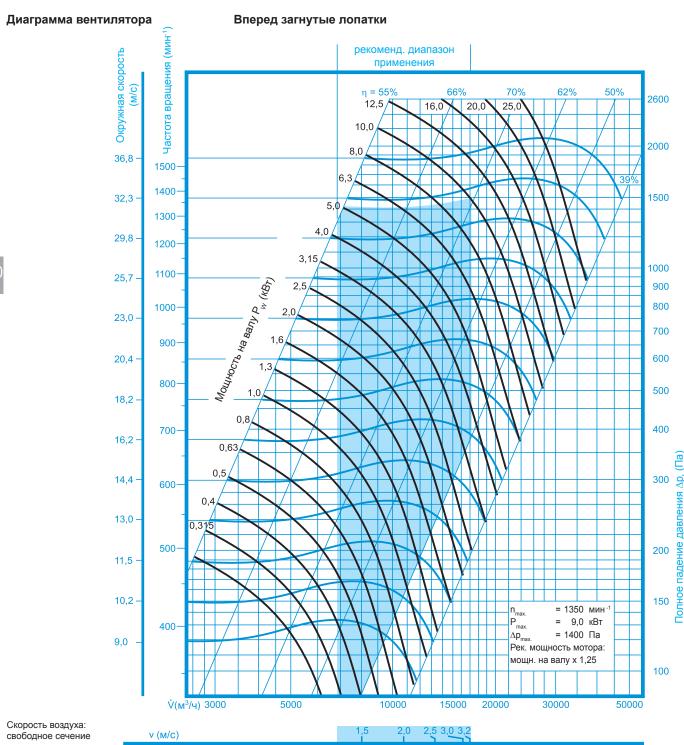

Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором



Приточно-вытяжная установка с камерой орошения

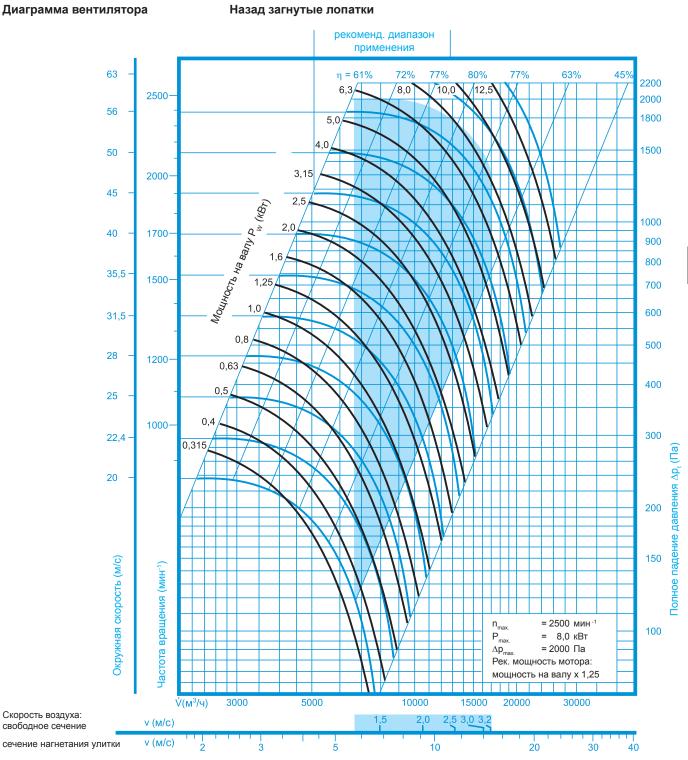
10

20

30

сечение нагнетания улитки

v (M/c)


Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Прямоприводной вентилятор

KG Top 170

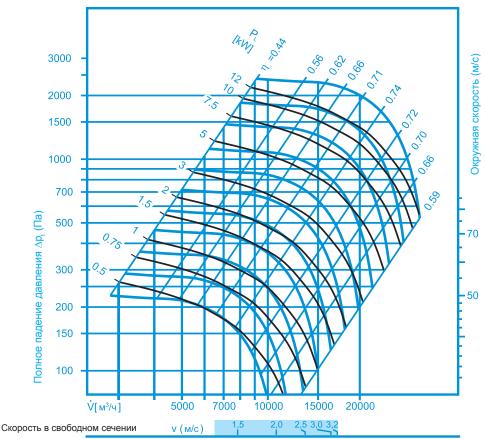
Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.

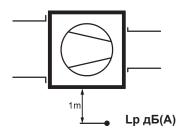

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Типоразмер KG	Расход воздуха м³/ч	Полное падение давления Па	Стандартные данные* электродвигателя мощность частота вращ. ток кВт мин-1 А				
KG 170	16000	500 1000 1500	4,0 7,5 15,0	1000 1500 1500	9,7 15,4 28,5		

^{*} Скорость вентилятора при частоте (f \geq 50Гц)

Диаграмма вентилятора Диаметр колеса 710 мм Точные данные вентилятора могут быть получены только в заказной спецификации!

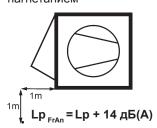

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

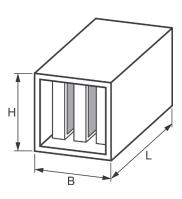
 $L_{_{\!\!\!\!\!W}}$ [дБ] $\;=\;$ вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

		Полное падение давления ∆р [Па]							
	L _w	500	750	1000	1250	1500	2000		
[-]	8.000	93	97	99	101	103	105		
[M³/4]	12.000	95	98	101	103	104	106		
>	16.000	96	100	102	104	106	108		

Уровень звукового давления Lp дБ(A)



Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.


	Вперед загнутые лопатки										
				агнутые	лопатки						
Ů	n	Lp	Ů	n	Lp	Ů	n	Lp			
м³/ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	500	37		560	45		630	51			
8.000	630	41	12.000	710	46	16.000	800	51			
0.000	800	46	12.000	900	49	1	1000	52			
	1000	51		1120	53		1250	56			
			Назад за	агнутые л	опатки						
Ů	n	Lp	Ů	n	Lp	Ů	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	1000	45		1400	49		1600	45			
8.000	1250	47	12.000	1600	52	16.000	1800	53			
0.000	1600	53		1800	55		2000	57			
	2000	59	1	2240	60	1	2240	60			
	Пр	ямоприв	одной в	ентилято	р, диам	етр 710 м	M				
Ů	n	Lp	Ý	n	Lp	Ů	n	Lp			
м³/ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	1000	53		1000	55		1200	56			
8.000	1200	57	12.000	1200	58	16.000	1350	60			
0.000	1300	59	12.000	1300	61	10.000	1500	62			
	1650	63		1650	64	1	1700	66			

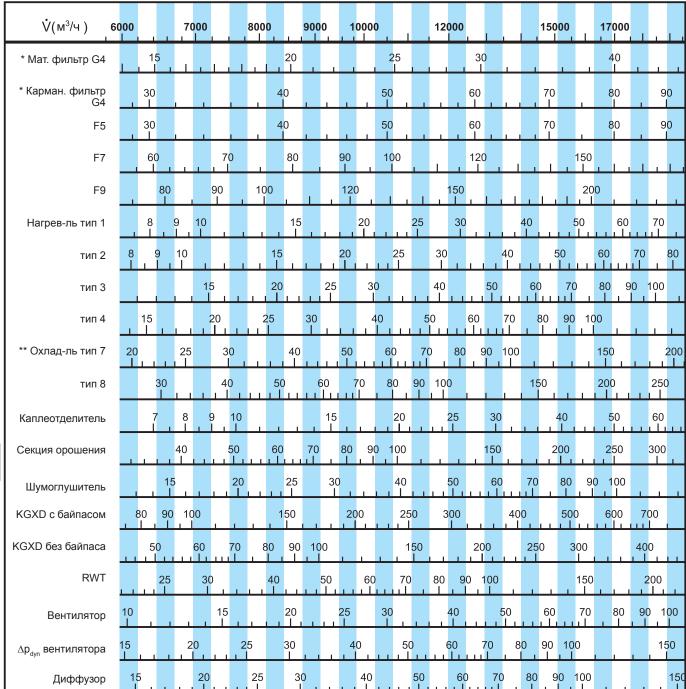
Уровень звукового давления Lр дБ(A)

Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Размеры (мм)

Шум


Высота Н	Ширина В	Длина L				
		Тип 11	Тип 12	Тип 13	Тип 14	
1322	1322	915	1119	1424	1627	

Погашение De дБ(А)

			Октавная полоса (Гц)								
ı	Тур	63	125	250	500	1000	2000	4000	8000		
1	11	4	8	18	20	23	17	14	14		
	12	5	10	22	24	28	20	15	15		
	13	8	14	29	31	36	25	17	17		
	14	9	16	33	35	41	28	19	19		

Для 2 подсоединенных шумоглушителей De = De₁ + De₂ - 3 дБ(A)

* Расчет: начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

** Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	1 1/2"	8,8 л
2	1 1/2"	8,8 л
3	2"	13,2 л
4	2"	17,6 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

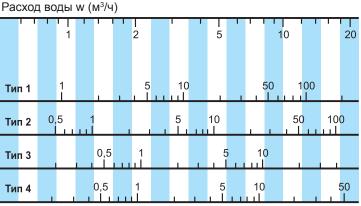
Нагреватель с медными трубками и ребрами

Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля


Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$$
 (м³/ч)

Q = мощность кВт $\Delta t_{w} = t_{WE} - t_{WA}$

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Тип	Подсоединен.	Объем	
7	2 1/2"	26.4 п	

35,2 л

Максимальное рабочее давление 16 Бар

2 1/2

Давление испытания 30 Бар

По запросу:

8

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

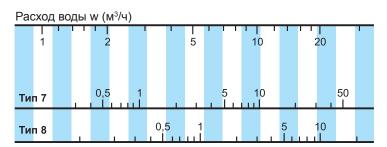
Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

Секция охлаждения

L = 814Секция охлаждения длинная

V (M	,	1,5		2,0		2,5		3,0		3,2	
V (M ³		8 00		11 00		13 00		16 00		17 00	
PKW	t _{∟E} °C	Q кВт	t _{LA} °C	Q кВт	t _{∟A} °C	Q кВт	t _{LA} °C	Q кВт	t _{LA} °C	Q кВт	t _∟ °C
Охладитель тип 7											
	32	84,8	10,2	106,3	11,5	125,9	12,5	144,0	13,3	150,9	13,6
4/8	28	72,3	9,8	90,3	10,9	106,8	11,8	121,9	12,5	127,7	12,8
	26	64,5	9,4	80,5	10,4	95,2	11,2	108,7	11,8	113,9	12,1
	25	60,6	9,2	75,7	10,1	89,4	10,8	102,1	11,5	106,9	11,7
	32	77,6	11,4	97,1	12,6	114,8	13,5	131,2	14,3	137,4	14,6
5/10	28	65,1	11,0	81,1	12,0	95,7	12,8	109,1	13,5	114,2	13,8
	26	57,2	10,5	71,3	11,5	84,1	12,2	95,9	12,8	100,4	13,0
	25	53,3	10,3	66,4	11,2	78,3	11,9	89,3	12,5	93,4	12,7
0,40	32	70,2	12,5	87,6	13,6	103,5	14,5	118,1	15,3	123,6	15,5
6/12	28 26	57,7 49,8	12,1 11,6	71,7 61,8	13,1 12,5	84,4 72,8	13,8 13,1	96,1 82,8	14,5 13,7	100,5 86,6	14,7 13,9
	25	45,8	11,4	56,9	12,2	66,9	12,8	76,2	13,3	79,7	13,5
	32	67,7	12,9	85,0	13,9	100,8	14,8	115,5	15,5	121,0	15,7
8/12	28	55,2	12,5	69,0	13,3	81,7	14,0	93,4	14,6	97,8	14,8
0/12	26	47,2	12,0	59,1	12,8	69,9	13,4	80,0	13,9	83,8	14,1
	25	43,2	11,8	54,1	12,5	64,0	13,0	73,2	13,5	76,7	13,7
				Ox	ладит	ель тип	8				
	32	100,1	6,4	128,7	7,1	155,6	8,2	181,0	8,9	190,8	9,1
4/8	28	86,3	6,3	110,7	7,0	133,5	8,0	155,0	8,6	163,3	8,8
4/0	26	77,1	6,2	98,9	6,8	119,2	7,7	138,4	8,3	145,8	8,5
	25	72,5	6,1	93,0	6,7	112,1	7,1	130,1	8,1	137,1	8,3
	32	92,7	7,8	118,9	8,4	143,4	9,0	166,6	10,0	175,5	10,3
5/10	28	78,8	7,7	100,7	8,3	121,2	8,8	140,5	9,8	147,9	10,0
	26 25	69,5 64,9	7,6	88,8 82,9	8,2	106,9 99,7	8,6	123,8 115,5	9,4	130,3 121,5	9,6
			7,6		8,1		8,5	·	8,9	•	9,4
	32 28	84,9 70,9	9,2 9,2	108,6 90,3	9,8 9,7	130,7 108,4	10,4 10,2	151,6 125,4	11,1 10,6	159,6 131,9	11,4 11,1
6/12	26	61,5	9,2	78,3	9,7	93,9	10,2	108,6	10,8	114,3	10,5
	25	56,8	9,0	72,3	9,5	86,7	9,9	100,0	10,3	105,4	10,3
	32	79,6	10,1	102,5	10,6	124,1	11,0	144,4	11,8	152,3	12,0
	28	65,8	10,1	84,4	10,5	101,9	10,9	118,4	11,5	124,7	11,7
8/12	26	56,4	10,0	72,4	10,3	87,4	10,6	101,5	10,9	107,0	11,0
	25	51,7	9,9	66,4	10,2	80,1	10,5	93,1	10,8	98,0	10,9

Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл.

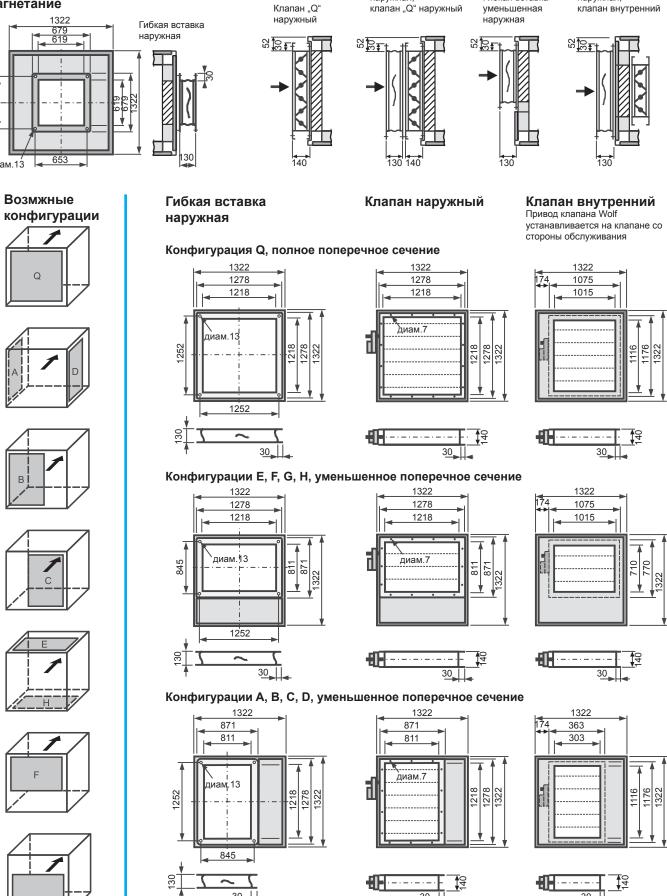

26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

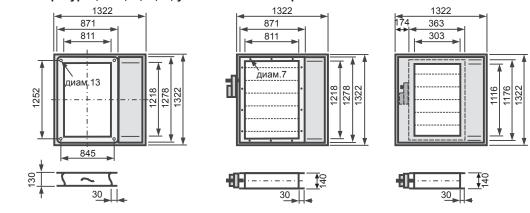
Другие рабочие значения по запросу

Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w} (M^3/4)$$

 \dot{Q} = Мощность в кВт $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$


Возможные комбинации клапанов и гибких вставок

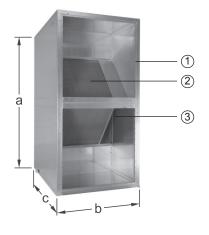

KG Top 170

Гибкая вставка "Q"

наружная,

Крутящий момент 1-го клапана согл. EN 1751 KL1: 8 Hм, согл. EN 1751 KL2: 10 Hм

Рекуперация тепла


KG Top 170

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно.

Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

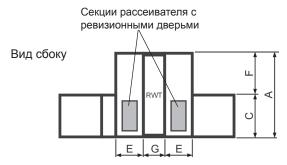
3 Внутренний байпас (по запросу)

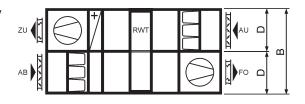
Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

Типоразмер	Расход воз, без байпаса	духа Ѷ [м³/ч] с байпасом	P a	азмеры [мі b	м] с	Вес [кг]	Подсоединение отвода конденсата
KGXD 170	17000	13200	2644	1322	2034	935	1 1/4"

Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

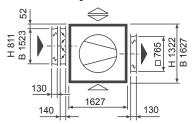
Описание RWT


RWT Потоки воздуха горизонтально/вертикально

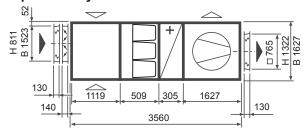

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

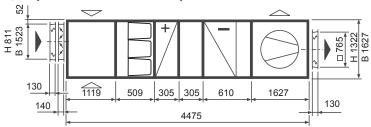
KG	А	В	С	D	Е	F	G
170	1830	2644	1322	1322	509	508	400

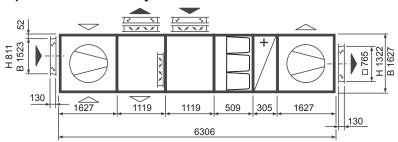
Размеры (мм)

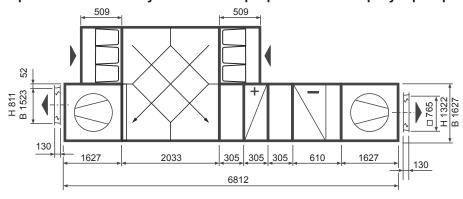


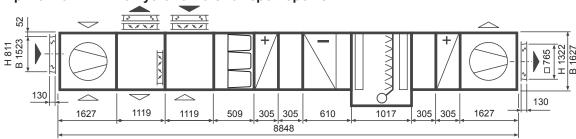
Вид сверху



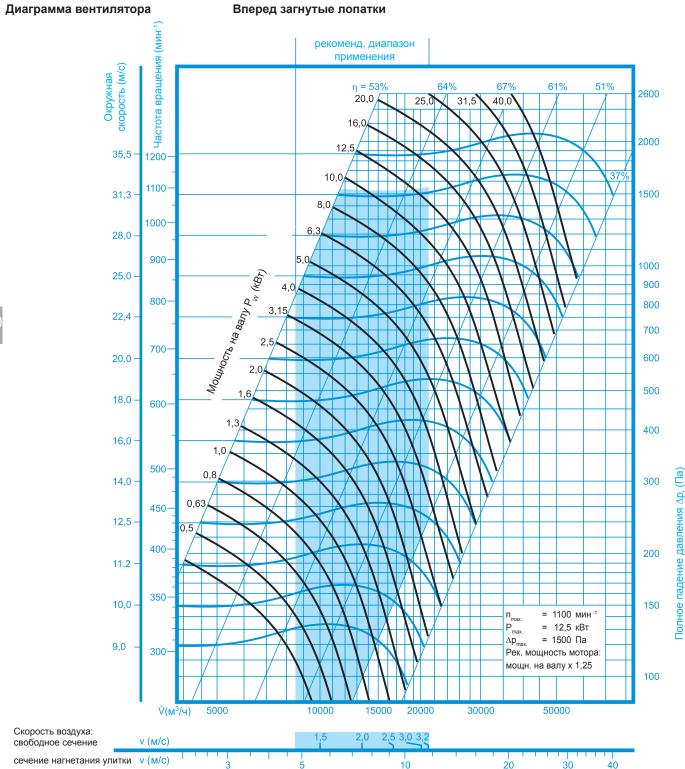

Вытяжная установка


Приточная установка

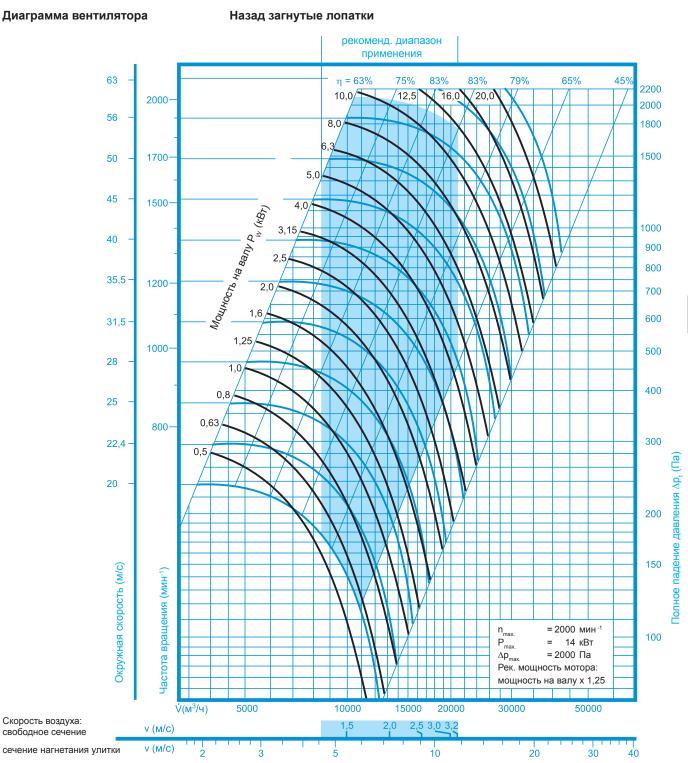

Центральный кондиционер


Приточно-вытяжная установка

Приточно-вытяжная установка с перекрестноточным рекуператором



Приточно-вытяжная установка с камерой орошения

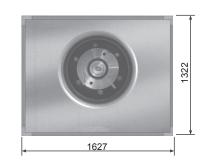

Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу



Прямоприводной вентилятор

KG Top 210

Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Типоразмер	Расход	Полное	э.	Стандартные данные*			
КG	воздуха	падение		электродвигателя			
	давления		мощность	ток			
	м³/ч Па		кВт	А			
KG 210	21000	500 1000 1500	5,5 11,0 15,0	1000 1500 1500	11,0 21,0 28,0		

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

Точные данные вентилятора могут быть получены только в заказной спецификации!

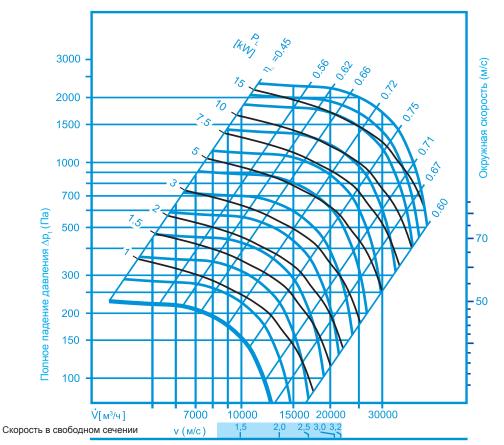
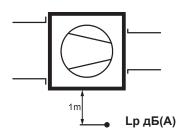
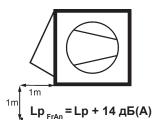


Диаграмма вентилятора 210 Диаметр колеса 900 мм

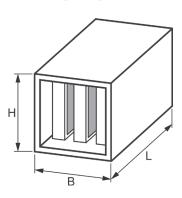

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

 ${\sf L}_{\sf w}\,[{\sf д}{\sf E}]$ = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.


			Полное падение давления ∆р [Па]								
	L _w	500	750	1000	1250	1500	2000				
٦]	15.000	95	99	101	103	105	107				
[M ³ /4]	20.000	97	101	103	105	106	109				
>											

Уровень звукового давления Lр дБ(A)



Уровень звукового давления Lp дБ(A)

Со свободным всасыванием или нагнетанием

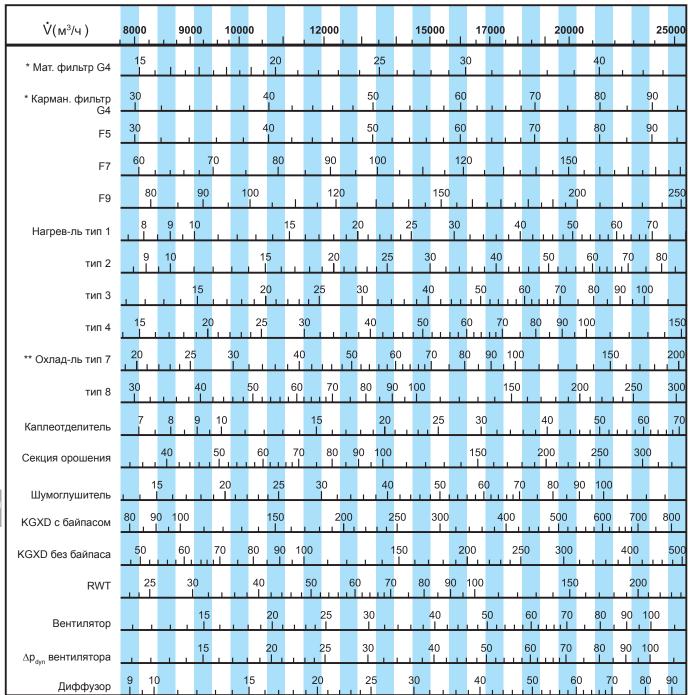
Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

	•									
		Вперед загну	утые лопаткі	1						
V М ³ /ч мин ⁻¹	n дБ(A)	Lр м³/ч	V мин ⁻¹	n дБ(A)	Lp					
	400	45		450	51					
15.000	500	46	20.000	560	51					
	630	50		710	53					
	800	55		900	58					
	Назад загнутые лопатки									
·V	n	Lp	·V	n	Lp					
м³/ч мин ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)						
	1120	53		1120	53					
15.000	1400	58	20.000	1400	58					
10.000	1800	65	20.000	1800	64					
	2000	68		2000	66					
	Прямопри	водной венті	илятор, диам	иетр 710 мм						
V	n	Lp	٠̈V	n	Lp					
м ³ /ч мин ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)						
	1150	55		1250	57					
15.000	1250	59	20.000	1350	61					
	1450	61		1550	63					
	1650	65		1700	66					

Размеры (мм)

Шум


Высота Н	Ширина В	Длина L						
		Тип 11	Тип 12	Тип 13	Тип 14			
1322	1627	915	1119	1424	1627			

Погашение De дБ(А)

		Октавная полоса (Гц)									
Тур	63	125	250	500	1000	2000	4000	8000			
11	4	8	18	20	23	17	14	14			
12	5	10	22	24	28	20	15	15			
13	8	14	29	31	36	25	17	17			
14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей De = De $_1$ + De $_2$ - 3 дБ(A)

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

** Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	1 1/2"	11,4 л
2	1 1/2"	11,4 л
3	2"	17,1 л
4	2"	22,8 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

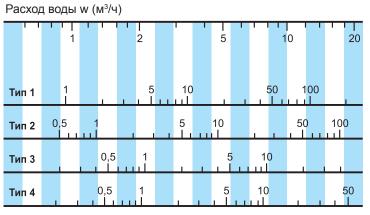
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

 \dot{Q} = мощность кВт

 $\Delta t_{\rm w} = t_{\rm WE} - t_{\rm WA}$

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

1322		•
_	,	©

Секция охлаждения

Секция охлаждения длинная

L = 814

Тип	Подсоединен.	Объем
7	2 1/2"	38,4 л
8	2 1/2"	61,4 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

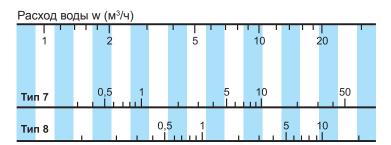
Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M/	/c)	1,5		2,0		2,5		3,0		3,2	
V (м	³ /4)	10 00	00	13 00	00	17 00		20 00	00	21 00	00
PKW	J°F	Q	t _{LA} °C	Q	t _{LA} °C	Q	t _{LA} °C	Q	t _{LA} °C	Q	t _{LA} °C
	°C	кВт	<u>°C</u>	кВт		кВт		кВт	°C	кВт	°C_
					• • •	ель тип					
	32	107,7	9,8	135,0	11,1	159,8	12,1	182,7	13,0	191,4	13,3
4/8	28 26	91,8 81,8	9,5 9,1	114,7 102,2	10,6 10,1	135,5 120,7	11,5 10,9	154,6 137.7	12,2 11,6	161,9 144.2	12,5 11,8
	25	76,8	8,9	95,9	9,8	113,3	10,9	129,3	11,0	135,3	11,5
-	32	98,4	11,0	123,0	12.2	145,4	13.2	166.0	14,0	173.8	14,3
	28	96,4 82,5	10,7	102,8	11,7	121,1	12,6	138,0	13,3	144,4	13,5
5/10	26	72,4	10,7	90,2	11,7	106,3	11,9	121,1	12,6	126,7	12,8
	25	67,4	10,0	83,9	10,9	98,9	11,6	112,6	12,2	117,8	12,5
	32	88.8	12,1	110,8	13,2	130,7	14,2	149,0	14,9	156,0	15,2
6/12	28	72,9	11,8	90,5	12,8	106,5	13,6	121,1	14,2	126,6	14,4
0/12	26	62,8	11,4	77,9	12,2	91,6	12,9	104,1	13,5	108,9	13,7
	25	57,7	10,9	71,6	11,9	84,2	12,6	95,7	13,1	100,0	13,3
	32	85,7	12,6	107,6	13,6	127,5	14,4	146,0	15,1	152,9	15,4
8/12	28	69,8	12,2	87,3	13,1	103,3	13,8	117,9	14,4	123,5	14,6
•	26	59,6	11,8	74,6	12,5	88,2	13,1	100,8	13,7	105,6	13,9
	25	54,5	11,3	68,2	12,2	80,7	12,8	92,2	13,3	96,5	13,5
				Ox	ладит	ель тип	8				
	32	126,1	6,2	162,5	6,9	196,6	7,5	228,9	8,5	241,3	8,7
4/8	28	108,8	6,2	139,7	6,8	168,7	7,3	195,9	8,3	206,4	8,5
7/0	26	97,1	6,1	124,7	6,6	150,4	7,1	174,7	7,6	184,0	8,2
	25	91,3	6,0	117,1	6,6	141,3	7,0	164,0	7,4	172,8	8,0
	32	116,6	7,7	149,7	8,3	180,7	8,9	210,0	9,4	221,2	9,6
5/10	28	99,1	7,7	126,7	8,2	152,6	8,8	176,8	9,2	186,1	9,4
	26 25	87,3	7,6	111,5	8,1	134,2	8,6	155,5	9,0	163,6	9,1
		81,4	7,5	104,0	8,0	125,0	8,5	144,8	8,8	152,4	9,0
	32	106,5	9,2	136,3	9,8	164,1	10,3	190,2	10,8	200,3	10,9
6/12	28 26	88,7	9,2	113,1	9,7	135,8	10,2	157,0	10,6	165,1	10,7
	25	76,8 70,8	9,1 9,1	97,8 90,1	9,6 9,5	117,3 108,0	10,0 9,9	135,5 124,8	10,3 10,2	142,5 131,2	10,5 10,3
	32	99,9	10,1	128,8	10,6	155,9	11,0	181,6	11,4	191,4	11,5
	28	82,4	10,1	106,0	10,6	128,0	10,8	148,7	11,4	156,7	11,3
8/12	26	70,6	10,0	90,6	10,3	109,4	10,6	127,1	10,9	133,9	11,0
	25	64,6	9,9	82,9	10,3	100,1	10,5	116,3	10,8	122,5	10,9

Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл.

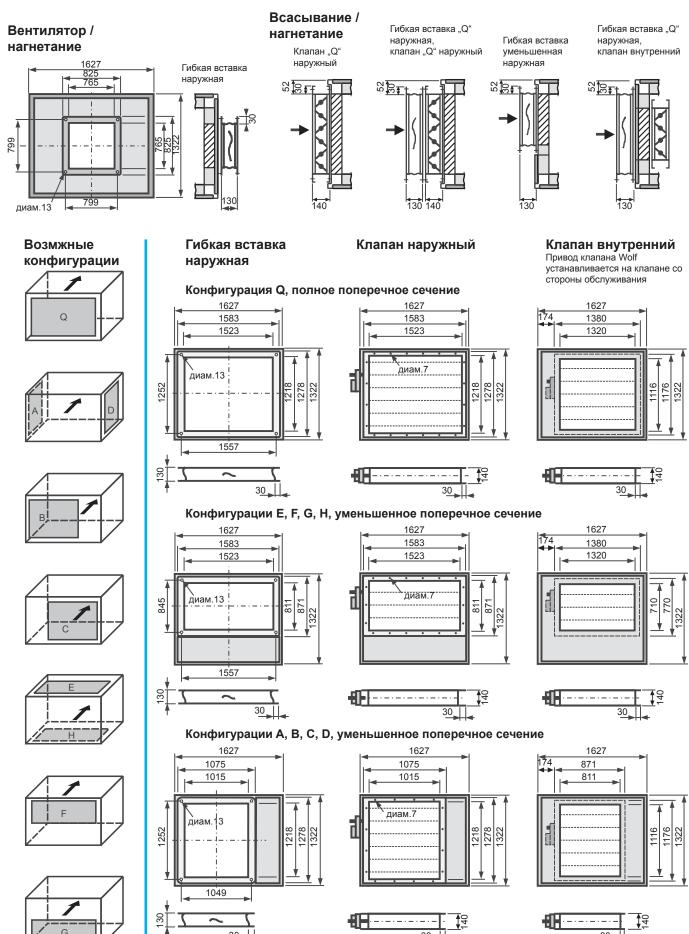
26°С / 49 % отн.вл., 25°С / 50 %отн.вл.


Другие рабочие значения по запросу

Падение давления воды (кПа)

 $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{w}} \quad (M^3/4)$ Расход воды

Q = Мощность в кВт


 $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$

Возможные комбинации клапанов и гибких вставок

KG Top 210

Крутящий момент 1-го клапана согл. EN 1751 KL1: 9 Hм, согл. EN 1751 KL2: 11 Hм

Рекуперация тепла

KG Top 210

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

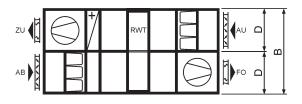
Типоразмер	Расход возд без байпаса	духа Ѷ [м³/ч] с байпасом	a a	азмеры [мі b	м]	Вес [кг]	Подсоединение отвода конденсата
KGXD 210	21000	16500	2644	1627	2034	1121	1 1/4"

Описание RWT

RWT Потоки воздуха горизонтально/ вертикально

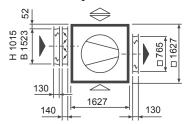


Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

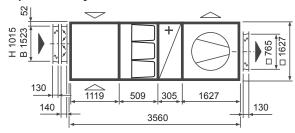

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

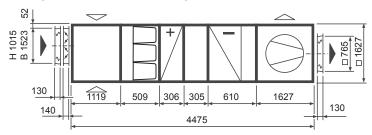
KG	А	В	С	D	Е	F	G
210	2237	3254	1322	1627	509	915	440

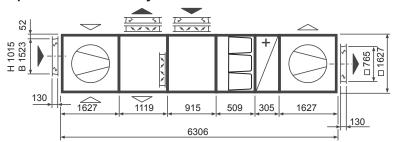
Размеры (мм)

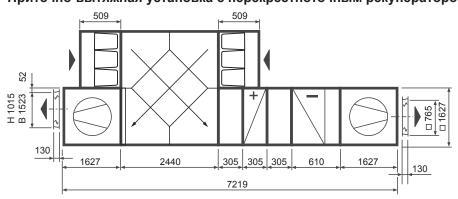


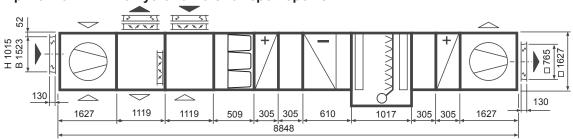
Вид сверху

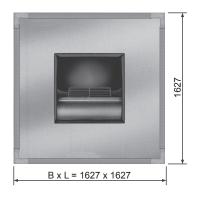


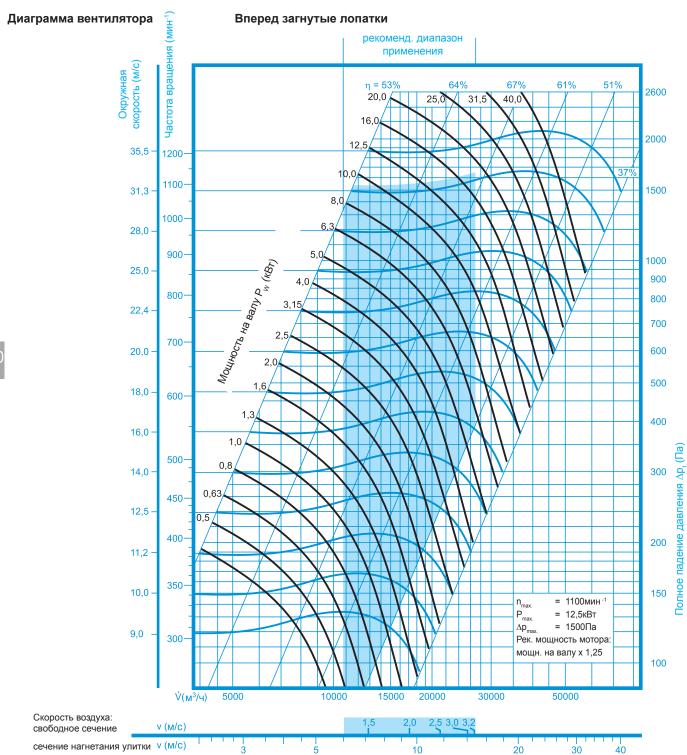

Вытяжная установка


Приточная установка

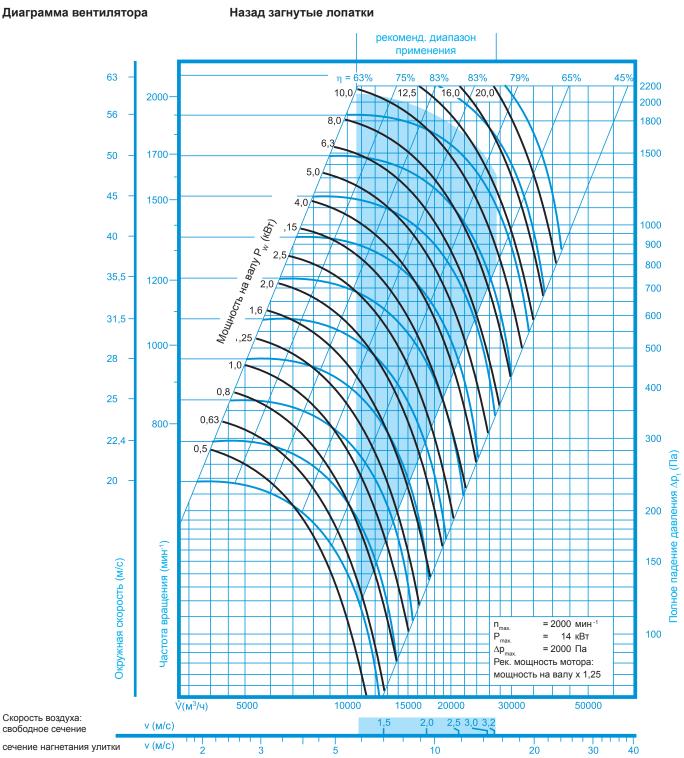

Центральный кондиционер


Приточно-вытяжная установка




Приточно-вытяжная установка с перекрестноточным рекуператором

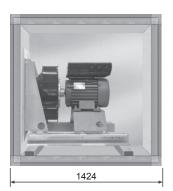
Приточно-вытяжная установка с камерой орошения


Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется


Ревизионная дверь: слева, справа или сверху, снизу по запросу

Прямоприводной вентилятор

KG Top 270

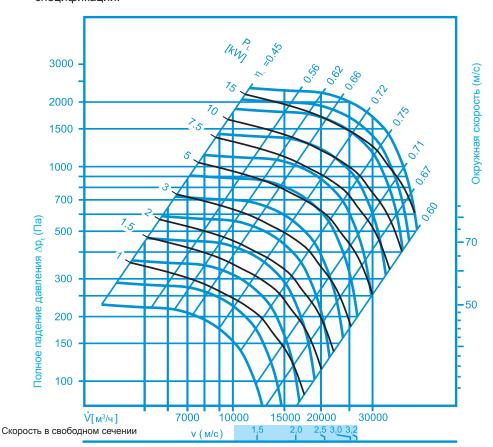
Свободный напор

ІВнутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.


См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

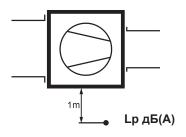
Не требуется учитывать динамическое давление для расчетов.

Типоразмер КG	Расход воздуха м³/ч	Полное падение давления Па	Стандартные данные* электродвигателя мощность частота вращ. ток кВт мин ⁻¹ А				
KG 270	25000	500 1000 1500	7,5 15,0 18,5	1000 1500 1500	17,5 28,5 35,0		

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

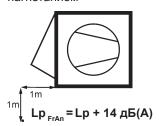
Диаграмма вентилятора Диаметр колеса 900 мм Точные данные вентилятора могут быть получены только в заказной спецификации!

270


Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\;\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.


			Полное падение давления ∆р [Па]									
	L _w	500	750	1000	1250	1500	2000					
٦]	15.000	95	99	101	103	105	107					
[M ³ / ⁴]	20.000	97	101	103	105	106	109					
>	25.000	98	101	104	106	107	110					

Уровень звукового давления Lp дБ(A)

Уровень звукового давления Lp дБ(A)

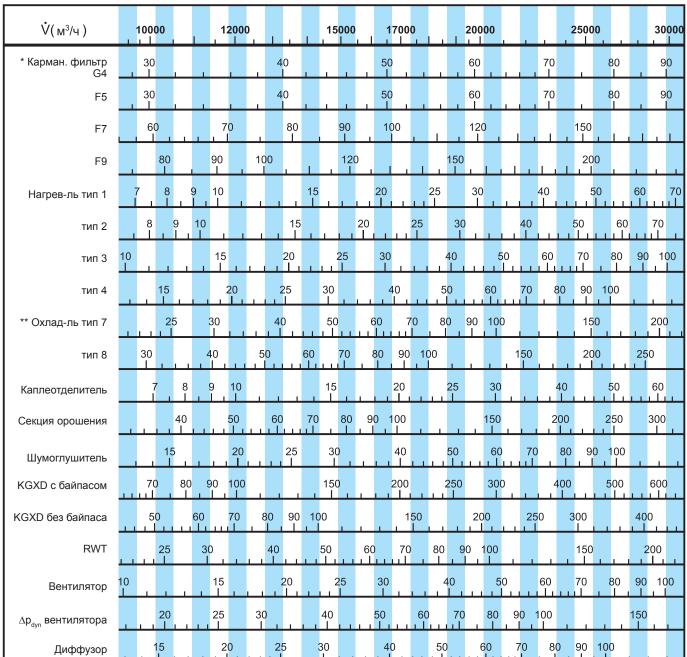
Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

		E	Зперед з	агнутые	лопатки					
Ů	n	Lp	Ů	n	Lp	Ů.	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)		
15.000	400	45	20.000	450	51	25.000	500	55		
	500	46		560	51		630	56		
	630	50		710	53		800	57		
	800	55		900	58		1000	60		
	Назад загнутые лопатки									
Ů	n	Lp	Ů.	n	Lp	Ý	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)		
15.000	1120	53	20.000	1120	53	25.000	1400	57		
	1400	58		1400	58		1600	61		
	1800	65		1800	64		1800	64		
	2000	68		2000	66		2000	66		
	Пр	ямоприв	одной в	ентилято	р, диаме	етр 800 м	М			
V	n	Lp	V	n	Lp	V	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)		
15.000	1150	55	20.000	1250	57	25.000	1400	58		
	1300	59		1400	61		1500	61		
	1400	61		1500	63	1	1600	64		
	1650	65		1700	66	1	1800	67		

Размеры (мм)


Высота Н	Ширина В		Длина L					
		Тип 11	Тип 12	Тип 13	Тип 14			
1627	1627	1627	1424	1119	915			

Погашение De дБ(А)

		` '									
		Октавная полоса (Гц)									
Тур	63	125	250	500	1000	2000	4000	8000			
11	4	8	18	20	23	17	14	14			
12	5	10	22	24	28	20	15	15			
13	8	14	29	31	36	25	17	17			
14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей De = De, + De, - 3 дБ(A)

* Расчет: начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9: 300 Па

** Охладитель / KGXD с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

Теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

	Тип	Подсоединения	Объем			
	1	2"	14,3 л			
	2	2"	14,3 л			
Ī	3	2 1/2"	21,5 л			
	4	2 1/2"	28,7 л			

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

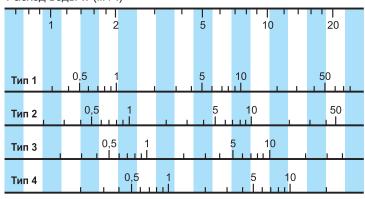
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

 $\dot{\mathbf{Q}}$ = мощность кВт $\Delta \mathbf{t}_{\mathrm{w}}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

Расход воды w (м³/ч)

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

↓ L Секция охлажде Секция охлажде	1627	•	•
	_1		
			<u> </u>

L = 610ния ния длинная

L = 814

Тип	Подсоединен.	Объем
7	3"	57,2 л
8	3"	76,3 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

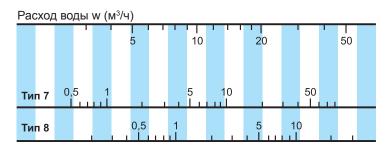
Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M		1,5		2,0		2,5		3,0		3,2	
V (M	<u></u>	12 00		17 00		21 00	_	25 00	_	27 00	
PKW	τ _{ιΕ}	Q	t _{∟∧}	Q	t _{∟A}	Q	t _{∟∧}	Q	t _{∟∧}	Q	t _{LA}
	°C	кВт	°C	кВт	°C	кВт	°C	кВт	°C	кВт	°C
					ладит	эль тип	7				
4/8	32	135,2	9,8	169,5	11,1	200,7	12,1	229,4	13,0	240,3	13,3
	28	115,5	9,5	144,3	10,6	170,5	11,5	194,6	12,2	203,7	12,5
	26	103,0	9,0	128,8	10,0	152,1	10,8	173,6	11,5	181,7	11,8
	25	96,8	8,8	121,0	9,8	143,0	10,5	163,1	11,2	170,8	11,4
5/10	32	124,1	11,0	155,2	12,2	183,4	13,2	209,4	14,0	219,3	14,3
	28	104,3	10,6	130,0	11,7	153,2	12,5	174,6	13,2	182,7	13,5
	26	91,8	10,2	114,4	11,1	134,8	11,9	153,6	12,5	160,7	12,8
	25	85,6	10,0	106,6	10,9	125,6	11,6	143,1	12,2	149,8	12,4
6/12	32	112,6	12,1	140,5	13,2	165,8	14,1	189,1	14,9	197,9	15,2
	28	92,7	11,7	115,2	12,7	135,6	13,5	154,3	14,2	161,3	14,4
	26	80,2	11,3	99,6	12,1	117,1	12,9	133,2	13,4	139,3	13,7
	25	73,9	11,0	91,8	11,9	107,9	12,5	122,7	13,1	128,3	13,3
8/12	32	108,0	12,6	135,6	13,6	160,8	14,4	184,0	15,2	192,8	15,4
	28	88,2	12,2	110,4	13,1	130,6	13,8	149,2	14,4	156,3	14,6
	26	75,6	11,8	94,6	12,5	111,9	13,1	127,9	13,7	134,0	13,8
	25	69,2	11,5	86,7	12,2	102,6	12,8	117,2	13,3	122,8	13,5
				Ox	ладит	эль тип	8				
4/8	32	157,6	6,2	203,0	6,9	245,6	7,5	285,8	8,5	301,3	8,8
	28	135,9	6,2	174,5	6,8	210,7	7,4	244,6	8,3	257,6	8,5
	26	121,3	6,1	155,7	6,6	187,9	7,1	218,1	7,6	229,7	8,2
	25	114,0	6,0	146,3	6,6	176,5	7,0	204,8	7,4	215,7	8,0
5/10	32	145,6	7,7	187,0	8,3	225,7	8,9	262,2	9,4	276,2	9,6
	28	123,7	7,7	158,3	8,3	190,5	8,8	220,7	9,2	232,4	9,4
	26	109,0	7,6	139,3	8,1	167,6	8,6	194,1	9,0	204,3	9,1
	25	101,6	7,5	129,8	8,0	156,1	8,5	180,8	8,8	190,3	9,0
6/12	32	132,9	9,2	170,2	9,8	204,9	10,3	237,5	10,8	250,0	10,9
	28	110,8	9,2	141,2	9,7	169,5	10,2	196,0	10,6	206,1	10,7
	26	95,9	9,1	122,1	9,6	146,4	10,0	169,2	10,4	177,9	10,5
	25	88,4	9,1	112,5	9,5	134,9	9,9	155,8	10,2	163,8	10,4
8/12	32	124,8	10,1	160,8	10,6	194,7	11,0	226,7	11,4	239,0	11,5
	28	103,0	10,1	132,3	10,5	159,8	10,8	185,6	11,2	195,6	11,3
	26	88,2	10,0	113,2	10,3	136,6	10,6	158,7	10,9	167,2	11,0
	25	80,7	9,9	103,6	10,3	125,0	10,6	145,2	10,8	152,9	10,9

Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл.

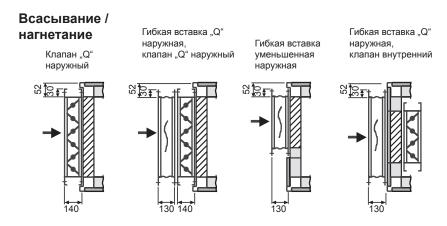

26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

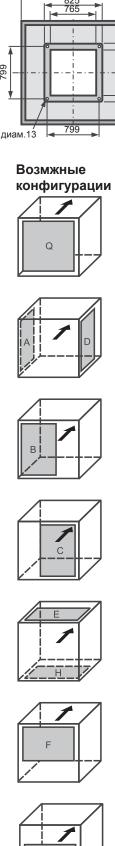
Другие рабочие значения по запросу

Падение давления воды (кПа)

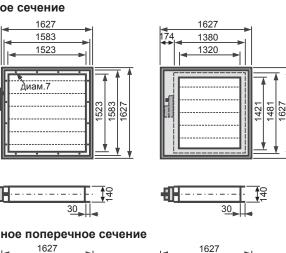
 $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{W}} \quad (M^{3}/4)$ Расход воды

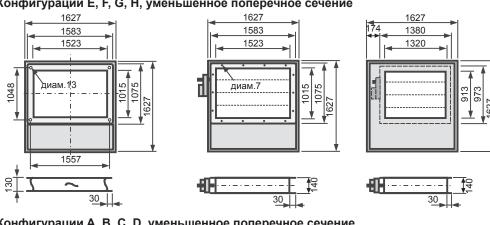
Q = Мощность в кВт $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$

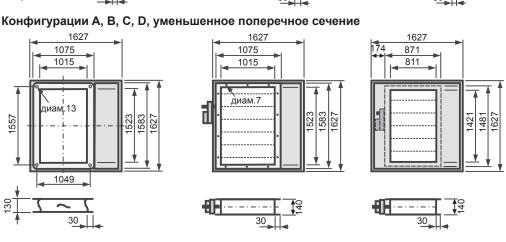

Возможные комбинации клапанов и гибких вставок


KG Top 270

Клапан внутренний Привод клапана Wolf

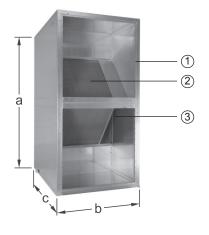

устанавливается на клапане со стороны обслуживания





Крутящий момент 1-го клапана согл. EN 1751 KL1: 11 Hм, согл. EN 1751 KL2: 13 Hм

Рекуперация тепла


KG Top 270

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

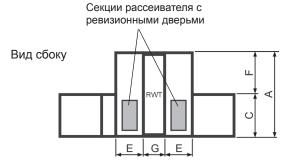
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

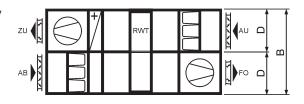
Типоразмер	Расход воз, без байпаса	байпаса байпасом		азмеры [мі b	м]	Вес [кг]	Подсоединение отвода конденсата
KGXD 270	27000	22000	3254	1627	2440	1380	1 1/4"

Описание RWT

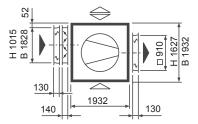
RWT Потоки воздуха горизонтально/вертикально

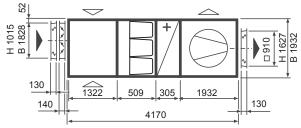


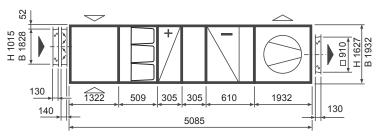
Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

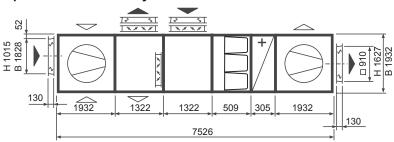

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

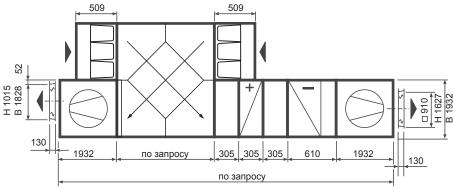
KG	Α	В	С	D	Е	F	G
270	2237	3254	1627	1627	509	610	440

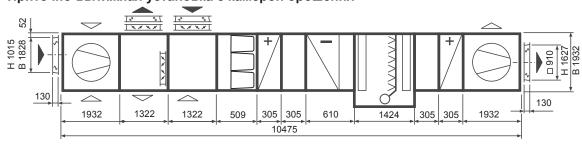

Размеры (мм)


Вид сверху

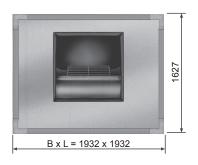

Вытяжная установка

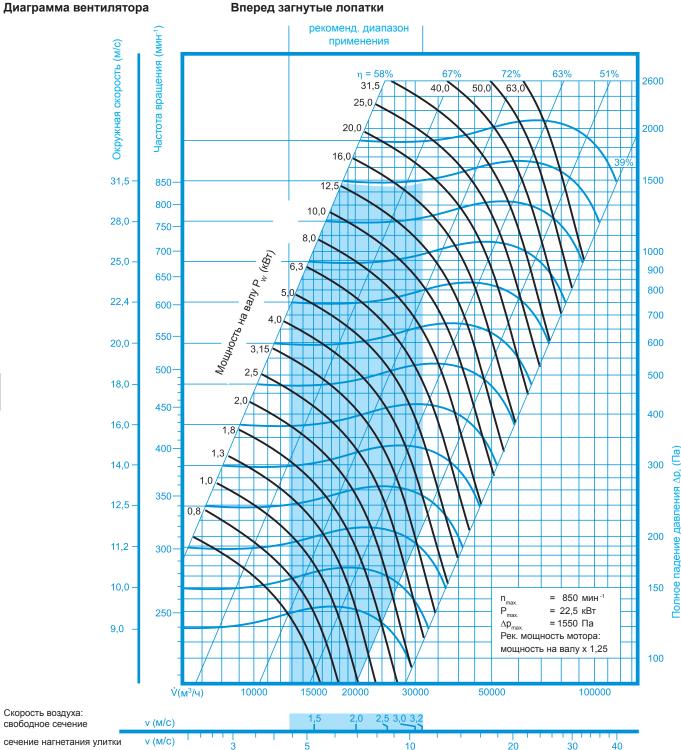

Приточная установка


Центральный кондиционер


Приточно-вытяжная установка

Приточно-вытяжная установка с перекрестноточным рекуператором


Приточно-вытяжная установка с камерой орошения



320

Секция **вентилятора**

Секция вентилятора

Позиция нагнетания:

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу

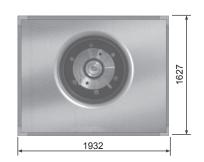

A, B, C

Диаграмма вентилятора Назад загнутые лопатки рекоменд. диапазон применения 1700η = 63% 63 74% 83% 84% 78% 62% 45% 2200 1600 **/**31,5 16,0/ 20,0 25,0 2000 56 1500 1800 12.5 1400 10,0 1500 50 1300 8,0 1200 45 6,3 1000 1100 5,0 40 900 1000-800 35,5 700 900-600 31,5 2,0 800 500 28 700 400 1,25 25 1,0 300 22,4 600 0,8 Полное падение давления ∆р, (Па) 20 500 200 150 Окружная скорость (м/с) астота вращения (мин-1 = 1650 мин⁻¹ 100 25 кВт = 2100 Па Δp_{max} Рек. мощность мотора: мощность на валу х 1,25 $\dot{V}(M^3/4)$ 10000 50000 Скорость воздуха: 2,0 2,5 3,0 3,2 свободное сечение v (M/c) сечение нагнетания улитки 10

Прямоприводной вентилятор

KG Top 320

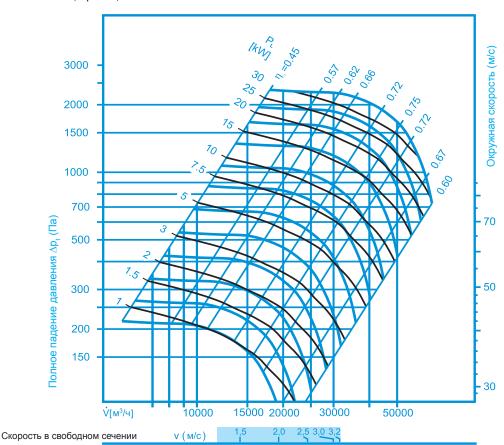
Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.


См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

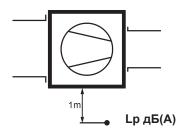
Не требуется учитывать динамическое давление для расчетов.

Типоразмер КG	Расход воздуха	Полное падение	Стандартные данные* электродвигателя		1Я
	м ³ /ч	давления Па	мощность кВт	частота вращ. мин ⁻¹	ток А
KG 320	32000	500 1000 1500	7,5 15,0 30,0	3000 3000 3000	15,5 28,5 55,0

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

Диаграмма вентилятора Диаметр колеса 1000 мм Точные данные вентилятора могут быть получены только в заказной спецификации!

Шум

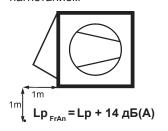

Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\,\,\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

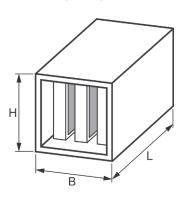
L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

			Полное падение давления ∆р [Па]									
	L _w	500	750	1000	1250	1500	2000					
7	15.000	95	99	102	103	105	107					
[M ³ /4]	20.000	97	100	103	105	106	109					
>	30.000	98	102	104	106	108	110					

Уровень звукового давления Lp дБ(A)


измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании. Вперед загнутые лопатки

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора,


		E	Вперед з	агнутые	лопатки			
Ý	n	Lp	Ů	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	280	41		315	42		355	49
15.000	355	45	20.000	400	45	30.000	450	50
10.000	450	50		500	50		560	53
	560	56		630	58		710	58
			Назад	загнутые	лопаткі	1		
Ů	n	Lp	Ů	n	Lp	Ů	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	630	46		710	52		900	57
15.000	800	52	20.000	900	57	30.000	1120	62
	1000	58		1120	63		1400	68
	1250	65		1400	69		1600	69
	Пр	ямоприв	водной в	ентилято	р, диам	етр 800 м	М	
V	n	Lp	V	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	мин ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	1150	55		1250	57		1400	58
15.000	1300	59	20.000	1400	61	30.000	1500	61
	1400	61		1500	63		1600	64
	1650	65	1	1700	66	1	1800	67

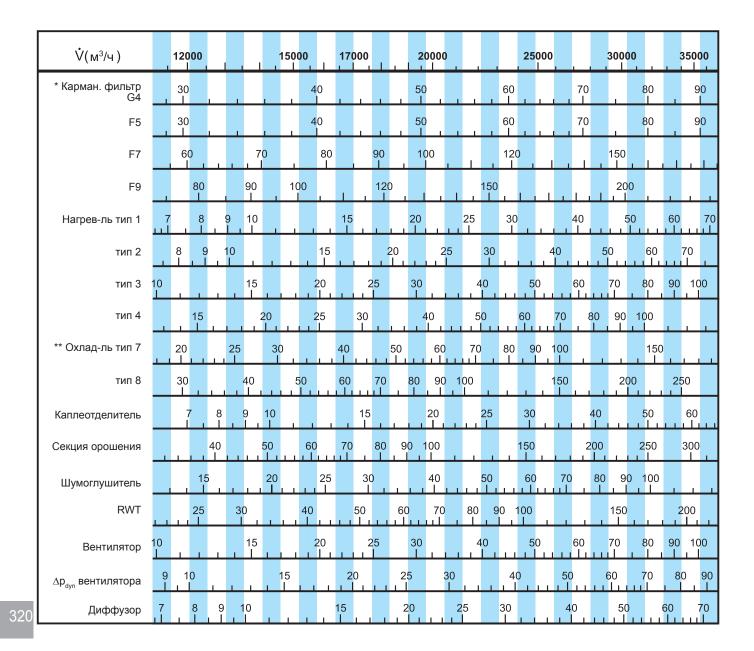
Уровень звукового давления Lp дБ(A)

Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Размеры (мм)

Высота Н	Ширина В	Длина L						
		Тип 11 Тип 12 Тип 13 Тип 1						
1627	1932	1627	1424	1119	915			


Погашение De дБ(А)

		Октавная полоса (Гц)										
Тур	63	63 125 250 500 1000 2000 4000 80										
11	4	8	18	20	23	17	14	14				
12	5	10	22	24	28	20	15	15				
13	8	14	29	31	36	25	17	17				
14	9	16	33	35	41	28	19	19				

Для 2 подсоединенных шумоглушителей De = De₁ + De₂ - 3 дБ(A)

* Расчет: — на

начальное пад. давл. + конечное пад давл.

2

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9: 300 Па

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе (для KGXD только на вытяжном воздухе).

^{**} Охладитель с осушением

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем		
1	2"	17,7 л		
2	2"	17,7 л		
3	2 1/2"	26,6 л		
4	2 1/2"	35,5 л		

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

Стальной оцинкованный нагреватель

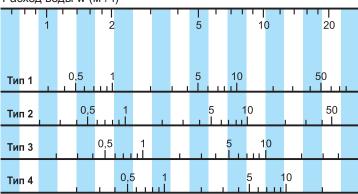
Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.


Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

Q = мощность кВт

$$\Delta t_{_{\!\!W}}$$
 = $t_{_{\!\!\!WE}}$ - $t_{_{\!\!\!WA}}$

Расход воды w (м³/ч)

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

1627	•	•
_	,	© ©

Секция охлаждения

L = 610

Секция охлаждения длинная

L = 814

Тип	Подсоединен.	Объем
7	3"	58,7 л
8	3"	93,9 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

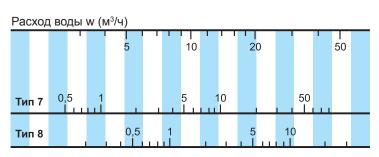
Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

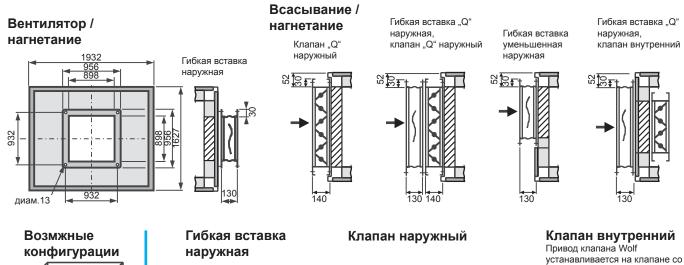
V (M/	(c)	1,5		2,0		2,5		3,0		3,2	
V (м	³/ 4)	15 00	-	20 00	00	25 00		30 00		32 00	00
PKW	t _{LE}	Q	t _{LA}								
	°C	кВт	°C								
	0.0	10=0	^ -			эль тип		0011	40.0	2212	10.0
	32 28	165,0	9,5	207,2	10,7	245,7	11,8	281,1	12,6	294,6	13,0
4/8	26	141,0 125,9	9,2 8,8	176,6 157,7	10,3 9,8	209,0 186,6	11,2 10,6	238,7 213,2	11,9 11,3	250,0 223,2	12,2 11,5
	25	118,4	8,6	148,2	9,5	175,4	10,0	200,4	10,9	209,8	11,3
	32	151,6	10,7	190,0	11,8	225,0	12,8	257,2	13,7	269.4	14,0
	28	127,6	10,7	159,4	11,4	188,3	12,0	214,8	12,9	224,8	13,2
5/10	26	112,5	9,9	140,4	10,9	165,8	11,6	189,1	12,3	198,0	12,5
	25	104,9	9,7	131,0	10,6	154,6	11,3	176,3	11,9	184,6	12,2
	32	137,9	11,8	172,4	12,9	203,8	13,8	232,7	14,6	243,7	14,9
6/12	28	113,8	11,5	141,7	12,4	167,1	13,2	190,3	13,9	199,1	14,1
	26	98,5	11,0	122,7	11,9	144,5	12,6	164,6	13,2	172,2	13,4
	25	90,9	10,5	113,1	11,6	133,3	12,3	151,7	12,9	158,7	13,1
	32	131,9	12,3	165,9	13,3	197,0	14,2	225,7	14,9	236,6	15,1
8/12	28	107,9	12,0	135,3	12,8	160,3	13,5	183,3	14,1	192,1	14,4
	26	92,5	11,6	116,0	12,3	137,5	12,9	157,3	13,4	164,9	13,6
	25	84,8	11,0	106,4	12,0	126,1	12,6	144,3	13,1	151,2	13,3
						эль тип					
	32	191,7	5,9	247,5	6,6	300,0	7,2	349,6	8,2	368,7	8,4
4/8	28	165,8	5,9	213,4	6,5	258,0	7,0	300,1	8,0	316,3	8,2
"	26	148,2	5,8	190,7	6,4	230,5	6,8	268,1	7,7	282,5	7,9
	25	139,4	5,8	179,3	6,3	216,8	6,7	252,1	7,1	265,7	7,7
	32	178,0	7,4	229,1	8,0	277,2	8,5	322,5	9,0	339,9	9,6
5/10	28 26	151,8 134,1	7,3 7,3	194,7 171,9	7,9 7,8	234,8 207,2	8,4 8,2	272,6 240,4	8,9 8,6	287,1 253,2	9,4 8,8
	25	125,2	7,3	160,5	7,7	193,3	8,1	224,3	8,5	236,2	8,6
	32	163,5	8,8	209,9	9,4	253,3	9,9	294,2	10,4	310.0	10,5
	28	136,9	8,8	175,0	9,3	210,6	9,8	244,0	10,4	256,8	10,3
6/12	26	119,0	8,7	152,0	9,2	182,7	9,6	211,6	10,0	222,7	10,1
	25	110,0	8,7	140,4	9,1	168,8	9,5	195,4	9,8	205,6	10,0
	32	152,5	9,8	196,9	10,3	238,8	10,7	278,5	11,1	293,8	11,2
	28	126,3	9,8	162,6	10,2	196,8	10,6	229,0	10,9	241,4	11,0
8/12	26	108,4	9,7	139,5	10,1	168,8	10,4	196,5	10,7	207,1	10,8
	25	99,5	9,7	128,0	10,0	154,8	10,3	180,1	10,5	189,9	10,6

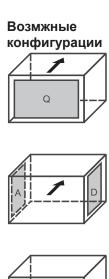
Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл.

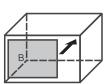

) % отн.вл., 28°С / 47 % отн.вл. 26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

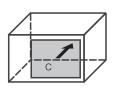
Другие рабочие значения по запросу

Падение давления воды (кПа)

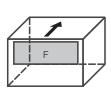

Pасход воды $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{M}}$ (м³/ч)

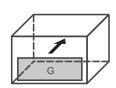

 $\dot{\mathbf{Q}}$ = Мощность в кВт $\Delta \mathbf{t}_{w}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

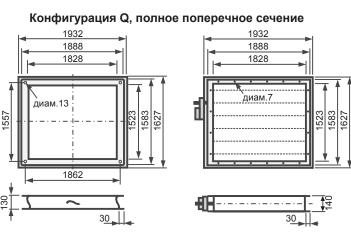


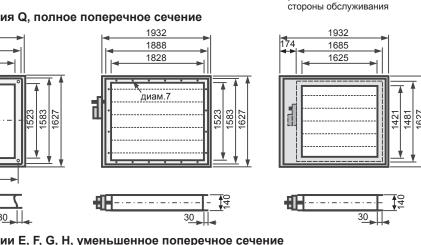

Возможные комбинации клапанов и гибких вставок

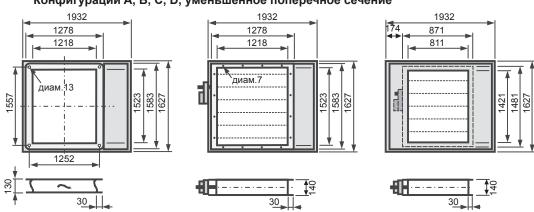
KG Top 320











Конфигурации А, В, С, D, уменьшенное поперечное сечение

Крутящий момент 1-го клапана согл. EN 1751 KL1: 13 Hм, согл. EN 1751 KL2: 15 Hм

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

Корпус

Такой же как и для других секций установки.

Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

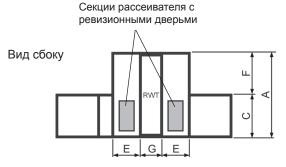
Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

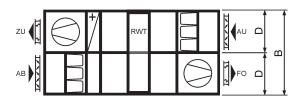
Технические данные по запросу

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

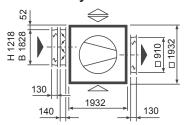


Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

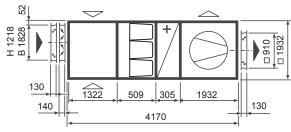

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

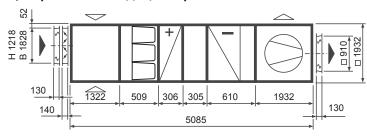
KG	Α	В	С	D	Е	F	G
320	2542	3864	1627	1932	509	915	440

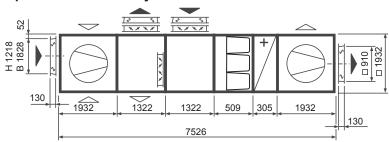
Размеры (мм)

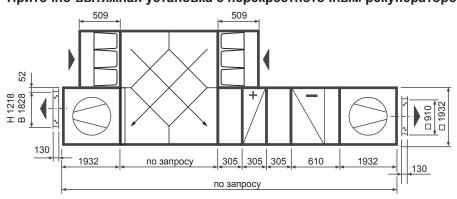


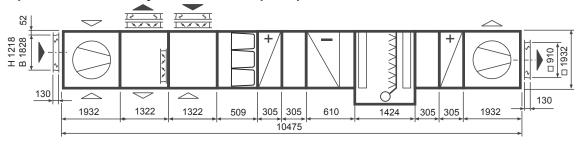
Вид сверху



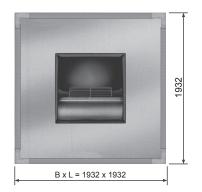

Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка

Приточно-вытяжная установка с перекрестноточным рекуператором


Приточно-вытяжная установка с камерой орошения

30

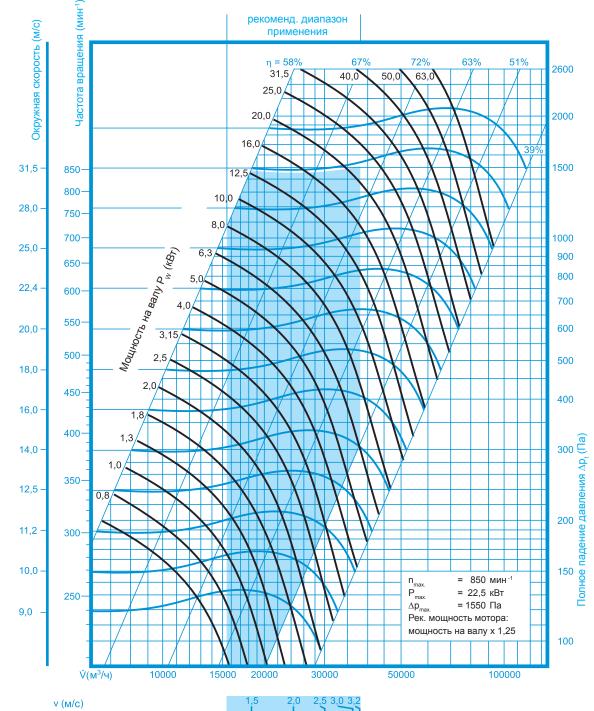

20

Диаграмма вентилятора

Вперед загнутые лопатки

10

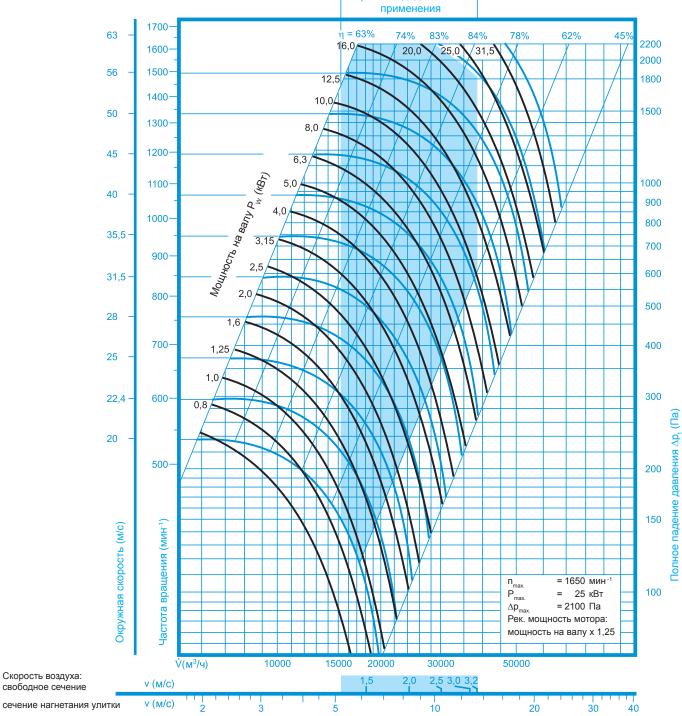
Скорость воздуха: свободное сечение

сечение нагнетания улитки

v (M/c)

Скорость воздуха:

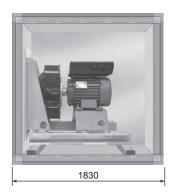
свободное сечение


A, B, C Позиция нагнетания::

прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой, Вентилятор/мотор:

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу


Назад загнутые лопатки Диаграмма вентилятора рекоменд. диапазон

Прямоприводной вентилятор

KG Top 380

осуществляется по всему сечению.

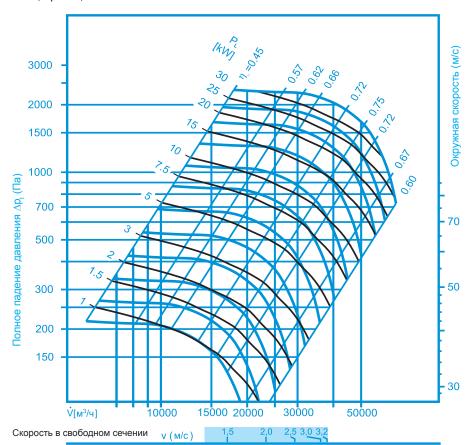
Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Не требуется учитывать динамическое давление для расчетов.


Конкретный свободный напор определяется заказчиком.

Типоразмер KG	Расход воздуха м³/ч	Полное падение давления Па	эл	ндартные данн пектродвигател частота вращ. мин ⁻¹	ІЯ
KG 380	40000	500 1000 1500	11,0 18,5 30,0	3000 3000 3000	21,0 35,0 55,0

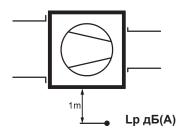
См. падение давления на каждой секции включая секцию вентилятора, зависит от

расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха

Диаграмма вентилятора Диаметр колеса 1000 мм Точные данные вентилятора могут быть получены только в заказной спецификации!

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

380

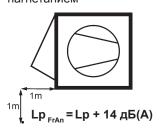

Полная звуковая мощность L_w дБ

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

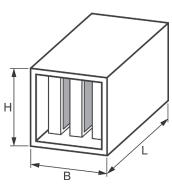
 ${\sf L}_{\sf w}\,[{\sf д}{\sf E}]$ = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

		Полное падение давления ∆р [Па]									
	L _w	500	750	1000	1250	1500	2000				
ን	20.000	97	101	103	105	106	108				
[M³/4]	30.000	99	102	105	107	108	109				
>	40.000	100	104	106	108	110	112				

Уровень звукового давления Lp дБ(A)



Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.


		ı	Зперед з	агнутые	лопатки					
V	n	Lp	Ů	n	Lp	V	n	Lp		
М ³ /Ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	М³/Ч	МИН ⁻¹	дБ(А)		
	315	45		355	52		400	58		
20.000	400	48	30.000	450	53	40.000	500	59		
	500	53		560	56		630	60		
	630	58		710	61		800	63		
	Назад загнутые лопатки									
V	n	Lp	v	n	Lp	Ý	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	мин ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)		
	710	51		900	56		1120	60		
20.000	900	58	30.000	1120	61	40.000	1250	63		
	1120	62		1400	66		1400	66		
	1400	68		1600	69		1600	68		
	Пр	ямоприв	одной ве	ентилято	р, диаме	тр 1000 м	1M			
Ů	n	Lp	V	n	Lp	V	n	Lp		
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)		
	750	57		850	59		950	60		
20.000	850	61	30.000	950	62	40.000	1100	64		
	970	63		1100	65		1180	66		
	1180	66		1200	68		1280	70		

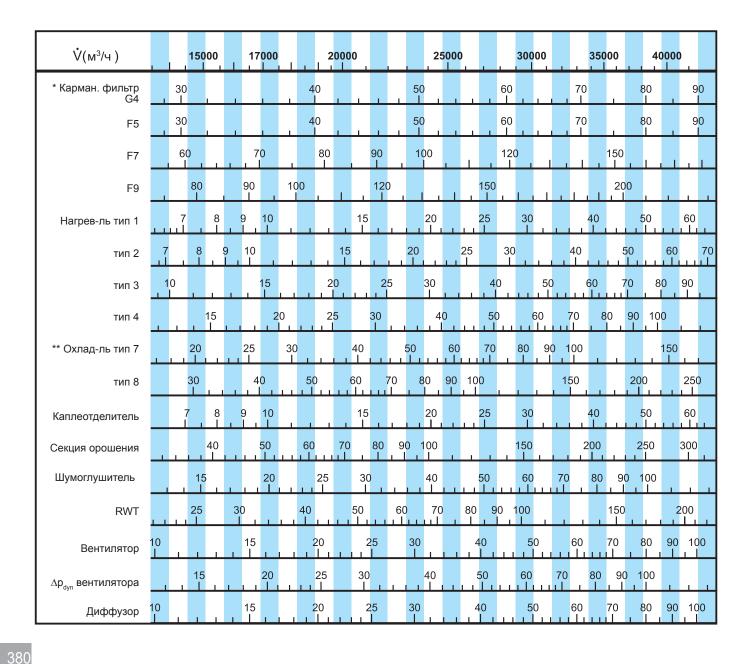
Уровень звукового давления Lр дБ(A)

Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Размеры (мм)

Высота Н	Ширина В	Длина L					
		Тип 11 Тип 12 Тип 13 Тип 14					
1932	1932	915	1119	1424	1627		


Погашение De дБ(А)

			Октавная полоса (Гц)									
١	Тур	63	125	250	500	1000	2000	4000	8000			
1	11	4	8	18	20	23	17	14	14			
	12	5	10	22	24	28	20	15	15			
	13	8	14	29	31	36	25	17	17			
	14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей De = De₁ + De₂ - 3 дБ(A)

Падение давления (Па)

* Расчет:

начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779: Фильтр G4, F5, F7: 200 Па F9: 300 Па

** Охладитель с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем		
1	2"	21,3 л		
2	2"	21,3 л		
3	2 1/2"	32,0 л		
4	2 1/2"	42,7 л		

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

Стальной оцинкованный нагреватель

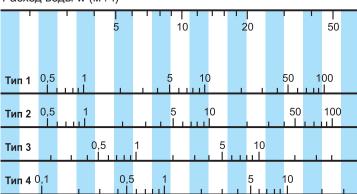
Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.


Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$$
 (м³/ч)

 $\dot{\mathbf{Q}}$ = мощность кВт

$$\Delta t_{w} = t_{WE} - t_{WA}$$

Расход воды w (м³/ч)

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Тип	Подсоединен.	Объем
7	4"	71,5 л
8	4"	114,4 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

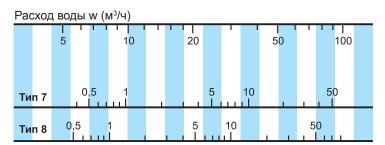
380

. Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

Секция охлаждения Секция охлаждения длинная

L = 610

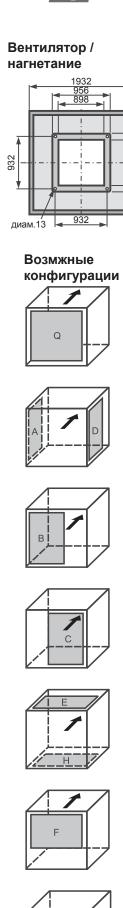
V (M/	'c)	1,5		2,0		2,5		3,0		3,2	
V (м	³/ч)	18 00		24 00		30 00		36 00	00	38 00	
PKW	t _{∟∈} °C	Q uD=	t _{LA} °C	Q D=	t _{LA} °C	Q D=	t _{LA} °C	Q D=	t _{LA} °C	Q D=	t _{LA} °C
		кВт	C	кВт		кВт эль тип		кВт	C	кВт	<u> </u>
	32	198,5	9,4	249,4	10,7	295,9	11,7	338,7	12,6	355,0	12,9
	28	196,5	9,4	249,4	10,7	295,9	11,7	287,6	11,9	301,3	12,9
4/8	26	151,6	8,7	189,9	9,7	224,7	10,5	256.8	11,3	269.0	11,5
	25	142,5	8,5	178,5	9,5	211,3	10,2	241,4	10,9	252,9	11,1
	32	182,5	10.6	228,8	11,8	271,0	12,8	309.8	13,6	324.6	13,9
5/10	28	153,6	10,3	192,0	11,3	226,8	12,2	258,8	12,9	270,9	13,1
3/10	26	135,4	9,9	169,1	10,8	199,7	11,6	227,9	12,2	238,6	12,5
	25	126,3	9,7	157,7	10,6	186,2	11,3	212,5	11,9	222,4	12,1
	32	166,0	11,7	207,6	12,8	245,5	13,7	280,4	14,5	293,6	14,8
6/12	28	137,0	11,4	170,7	12,4	201,3	13,2	229,3	13,8	240,0	14,1
	26	118,6	11,0	147,7	11,9	174,1	12,6	198,4	13,2	207,5	13,4
	25	109,4	10,4	136,3	11,6	160,6	12,2	182,9	12,8	191,3	13,0
	32	158,7	12,3	199,7	13,3	237,2	14,1	271,8	14,8	285,0	15,1
8/12	28	129,8	12,0	162,9	12,8	193,1	13,5	220,9	14,1	231,4	14,3
	26 25	111,3 102,1	11,5 11,0	139,7 128,1	12,3 12,0	165,6 151,9	12,9 12,6	189,5 173,8	13,4 13,1	198,6 182,2	13,6
	25	102,1	11,0	,	,			173,0	13,1	102,2	13,2
						эль тип					
	32	230,4	5,9	297,6	6,5	360,8	7,1	420,6	8,1	443,7	8,4
4/8	28 26	199,3 178,2	5,9 5,8	256,6 229,3	6,5 6,3	310,4 277,3	7,0 6,8	361,1 322,6	8,0	380,7 340,1	8,2 7,9
	25	167,6	5,8	215,7	6,3	260,8	6,7	303,4	7,7 7,1	319,8	7,9
	32	214,0	7,3	275,6	7,9	333,5	8,5	388,1	9,0	409.1	9,6
	28	182,5	7,3	234,2	7,9	282,6	8,4	328,1	8,8	345.6	9,0
5/10	26	161,2	7,2	206,8	7,7	249,3	8,2	289,4	8,6	304,8	8,7
	25	150,6	7,2	193,0	7,7	232,7	8,1	270,1	8,5	284,4	8,6
	32	196,6	8,8	252,4	9,3	304,8	9,9	354,2	10,3	373,2	10,5
6/12	28	164,7	8,8	210,6	9,3	253,5	9,8	293,8	10,2	309,3	10,3
0/12	26	143,1	8,7	182,9	9,2	220,0	9,6	254,8	9,9	268,2	10,1
	25	132,3	8,7	169,0	9,1	203,2	9,5	235,3	9,8	247,6	9,9
	32	183,3	9,8	236,8	10,3	287,3	10,7	335,1	11,0	353,6	11,2
8/12	28	151,9	9,8	195,6	10,2	236,7	10,5	275,6	10,8	290,6	11,0
8/12	26	130,4	9,7	167,8	10,0	203,1	10,4	236,4	10,6	249,3	10,7
	25	119,6	9,7	153,9	10,0	186,3	10,3	216,8	10,5	228,6	10,6

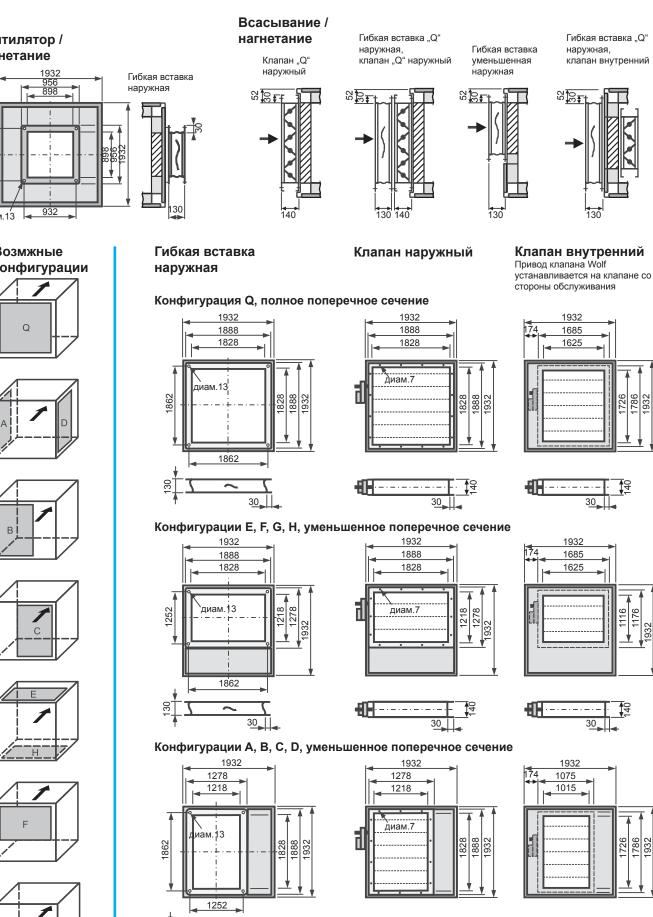

Параметры вход. воздуха: 32°С / 40 % отн.вл., 28°С / 47 % отн.вл. 26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

Другие рабочие значения по запросу

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{w}} (M^3/4)$$


 $\dot{\mathbf{Q}}$ = Мощность в кВт $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$



Возможные комбинации клапанов и гибких вставок

KG Top 380

Крутящий момент 1-го клапана согл. EN 1751 KL1: 16 Hм, согл. EN 1751 KL2: 18 Hм

Рекуперация тепла

KG Top 380

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

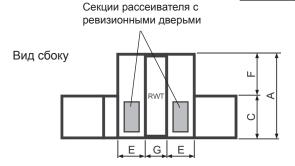
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

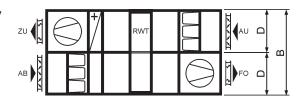
Технические данные по запросу

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

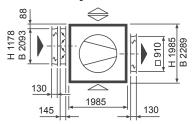


Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

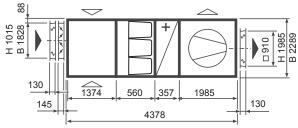

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

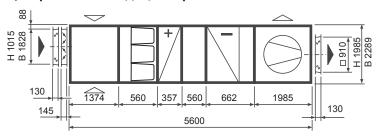
Размеры (мм)

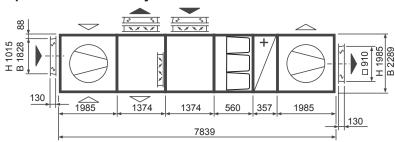
KG	Α	В	С	D	Е	F	G
380	2847	3864	1932	1932	509	915	440

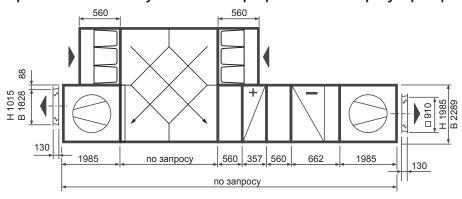


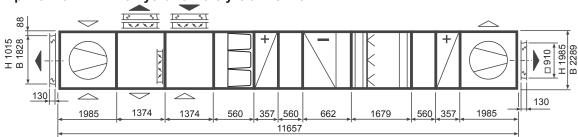
Вид сверху

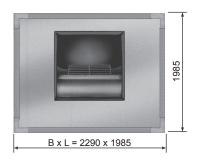


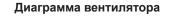

Вытяжная установка


Приточная установка

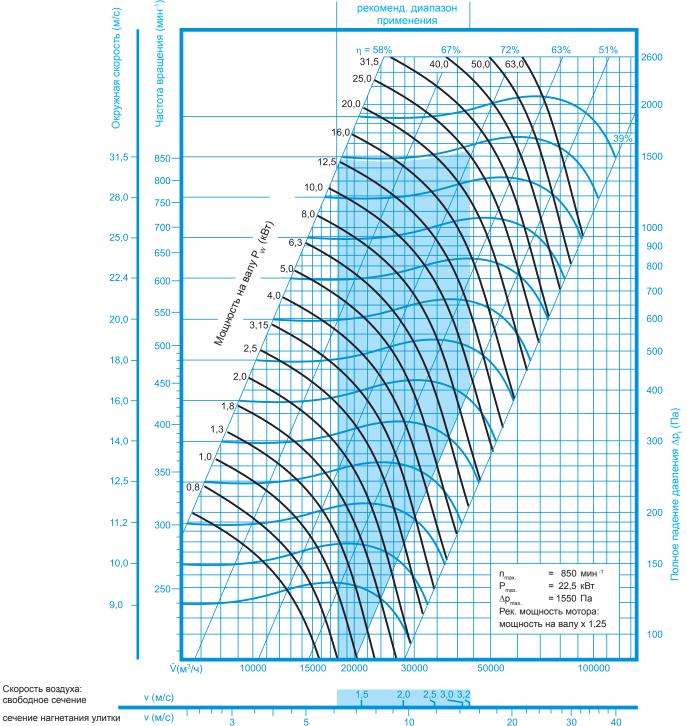

Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором



Приточно-вытяжная установка с увлажнением



Вперед загнутые лопатки

Скорость воздуха:

свободное сечение

A, B, C Позиция нагнетания::

прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой, Вентилятор/мотор:

внутренний клапан не используется

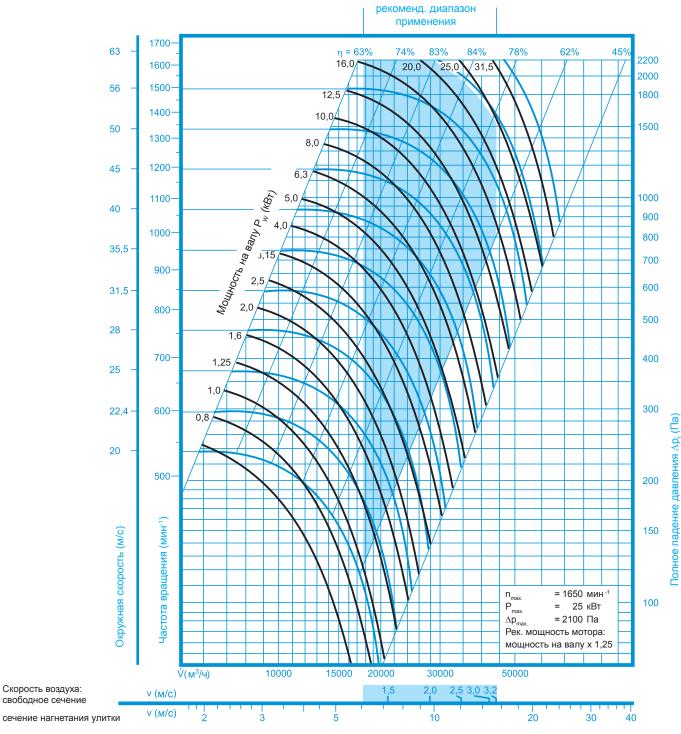
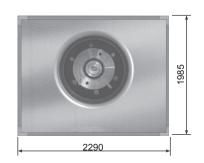

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Диаграмма вентилятора

Скорость воздуха:

свободное сечение


Назад загнутые лопатки



Прямоприводной вентилятор

KG Top 450

Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.

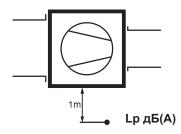
См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Типоразмер КG	Расход воздуха	Полное падение	Стандартные данные* электродвигателя		1Я
	м ³ /ч	давления Па	мощность кВт	частота вращ. мин ⁻¹	ток А
KG 450	40000	500 1000 1500	11,0 18,5 30,0	3000 3000 3000	21,0 35,0 55,0

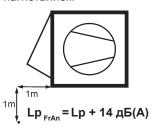
^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

Диаграмма вентилятора Диаметр колеса 1000 мм Точные данные вентилятора могут быть получены только в заказной спецификации!

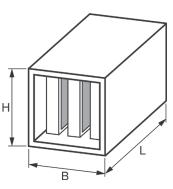

Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\,\,\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.


		Полное падение давления ∆р [Па]									
	L _w	500	750	1000	1250	1500	2000				
[-]	20.000	97	101	103	105	106	108				
[M³/4]	30.000	99	102	105	107	108	109				
>	40.000	100	104	106	108	110	112				

Уровень звукового давления Lp дБ(A)



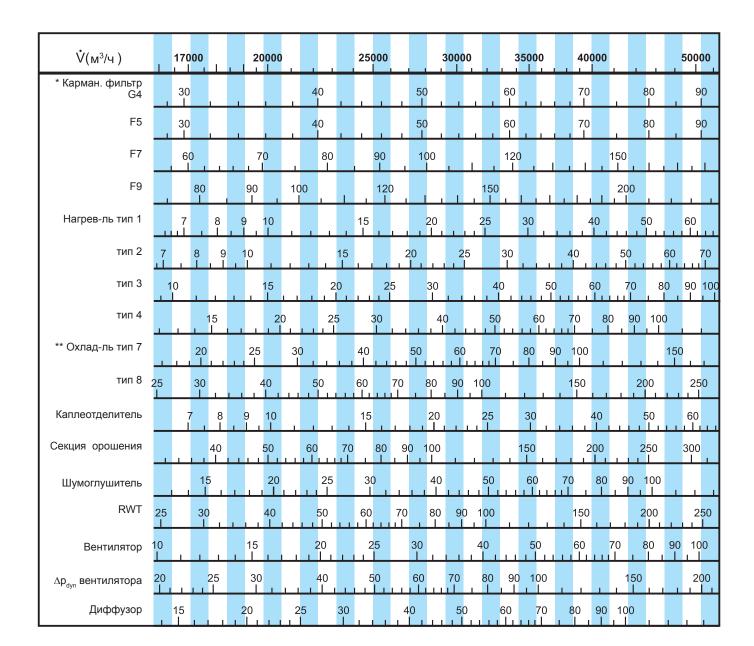
Уровень звукового давления Lp дБ(A)

Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.

		I	Вперед з	агнутые	лопатки						
Ý	n	Lp	Ů.	n	Lp	Ý	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	315	45		355	52		400	58			
20.000	400	48	30.000	450	53	40.000	500	59			
	500	53		560	56		630	60			
	630	58		710	61		800	63			
	Назад загнутые лопатки										
V	n	Lp	Ů	n	Lp	V	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	710	51		900	56		1120	60			
20.000	900	58	30.000	1120	61	40.000	1250	63			
	1120	62		1400	66		1400	66			
	1400	68		1600	69		1600	68			
	Пря	ямоприв	одной ве	нтилято	р, диаме	тр 1000 м	IM				
V	n	Lp	V	n	Lp	Ý	n	Lp			
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)			
	750	57		850	59		950	60			
20.000	850	61	30.000	950	62	40.000	1100	64			
	970	63		1100	65	1	1180	66			
	1180	66		1200	68		1280	70			


Размеры (мм)

Высота Н	Ширина В	Длина L				
		Тип 11 Тип 12 Тип 13 Тип 14				
1985	2290	968	1171	1476	1680	

Погашение De дБ(А)

				Окта	вная поло	са (Гц)			
١	Тур	63	125	250	500	1000	2000	4000	8000
1	11	4	8	18	20	23	17	14	14
	12	5	10	22	24	28	20	15	15
	13	8	14	29	31	36	25	17	17
	14	9	16	33	35	41	28	19	19

Для 2 подсоединенных шумоглушителей De = De₁ + De₂ - 3 дБ(A)

* Расчет:

начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9: 300 Па

Примечание: при скоростях в свободном сечении выше $^{\circ}$ 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.

^{**} Охладитель с осушением

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	2 1/2"	25,0 л
2	2 1/2"	25,0 л
3	3"	37,6 л
4	3"	50,1 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

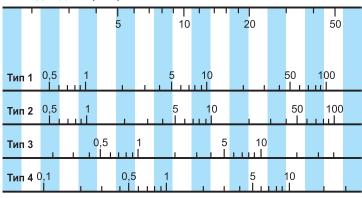
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$$
 (м³/ч)

$$\dot{Q}$$
 = мощность кВт
 $\Delta t_w = t_{WE} - t_{WA}$

Расход воды w (м³/ч)

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

1985	•	•
,	,	(a)

Секция охлаждения

L = 662

Тип	Подсоединен.	Объем
7	4"	84,9 л
8	4"	135,8 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

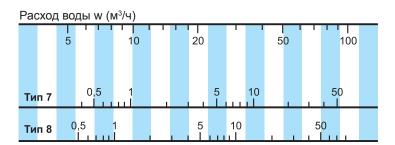
Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M/	(c)	1,5 2,0		2,5		3,0		3,2			
У́ (м	³/ 4)	21 00	0		28 000		00	42 00	-	45 00	
PKW	t _{LE}	Q _I	t _{LA}	Q vP=	t _{LA}	Q _I	t _{LA} °C	Q кВт	t _{LA} °C	Q кВт	t _{LA} °C
°C кВт °C кВт °C кВт °С тип 7								КОТ	C	KDI	U
4/8	32	231,5	9,4	290,9	10,6	345,1	11,7	395,2	12,5	414,2	12,9
	28	197,8	9,1	247,9	10,2	293,5	11,1	335,5	11,8	351,4	12,1
	26	176,6	8,7	221,2	9,7	261,9	10,5	299,3	11,2	313,5	11,4
	25	166,0	8,5	207,9	9,4	246,1	10,2	281,3	10,9	294,7	11,1
5/10	32	212,6	10,6	266,5	11,8	315,7	12,7	361,0	13,6	378,2	13,9
	28	178,8	10,3	223,5	11,3	264,0	12,2	301,3	12,9	315,4	13,1
	26	157,5	9,9	196,7	10,8	232,3	11,6	265,1	12,2	277,6	12,4
	25	146,8	9,7	183,3	10,6	216,5	11,3	247,1	11,9	258,6	12,1
6/12	32	193,0	11,7	241,5	12,8	285,6	13,7	326,2	14,5	341,6	14,8
	28	159,1	11,4	198,3	12,4	233,9	13,2	266,5	13,8	278,9	14,1
	26	137,7	11,0	171,5	11,9	202,1	12,6	230,2	13,1	240,9	13,4
	25	126,9	10,5	158,0	11,6	186,2	12,3	212,1	12,8	221,9	13,0
8/12	32	184,8	12,3	232,6	13,3	276,4	14,1	316,8	14,8	332,2	15,1
	28	151,1	11,9	189,6	12,8	224,7	13,5	257,2	14,1	269,5	14,3
	26	129,4	11,5	162,5	12,3	192,6	12,9	220,5	13,4	231,0	13,6
	25	118,6	11,0	148,9	12,0	176,5	12,6	202,0	13,0	211,7	13,2
				Ox	ладит	эль тип	8				
4/8	32	269,1	5,9	347,7	6,5	421,7	7,1	491,8	8,1	518,8	8,3
	28	232,8	5,9	299,8	6,4	362,8	7,0	422,3	7,9	445,2	8,1
	26	208,1	5,8	267,9	6,3	324,1	6,8	377,2	7,2	397,6	7,8
	25	195,8	5,7	252,0	6,2	304,8	6,7	354,7	7,1	373,9	7,7
5/10	32	249,9	7,3	322,0	7,9	389,7	8,5	453,7	8,9	478,3	9,1
	28	213,2	7,3	273,7	7,9	330,2	8,3	383,6	8,8	404,1	8,9
	26	188,3	7,2	241,6	7,7	291,3	8,2	338,3	8,6	356,4	8,7
	25	175,8	7,2	225,5	7,7	271,9	8,1	315,7	8,4	332,5	8,6
6/12	32	229,5	8,8	294,9	9,3	356,2	9,8	414,0	10,3	436,2	10,4
	28	192,4	8,7	246,0	9,3	296,2	9,7	343,4	10,1	361,5	10,3
	26	167,1	8,7	213,6	9,2	257,0	9,6	297,8	9,9	313,4	10,0
	25	154,5	8,7	197,4	9,1	237,4	9,5	274,9	9,8	289,4	9,9
8/12	32	214,0	9,8	276,6	10,3	335,7	10,7	391,7	11,0	413,3	11,2
	28	177,3	9,8	228,5	10,2	276,6	10,5	322,2	10,8	339,7	10,9
	26	152,2	9,7	196,0	10,0	237,3	10,3	276,3	10,6	291,4	10,7
	25	139,6	9,7	179,8	10,0	217,6	10,3	253,3	10,5	267,1	10,6

Параметры вход. воздуха: 32°C / 40 % отн.вл., 28°C / 47 % отн.вл.

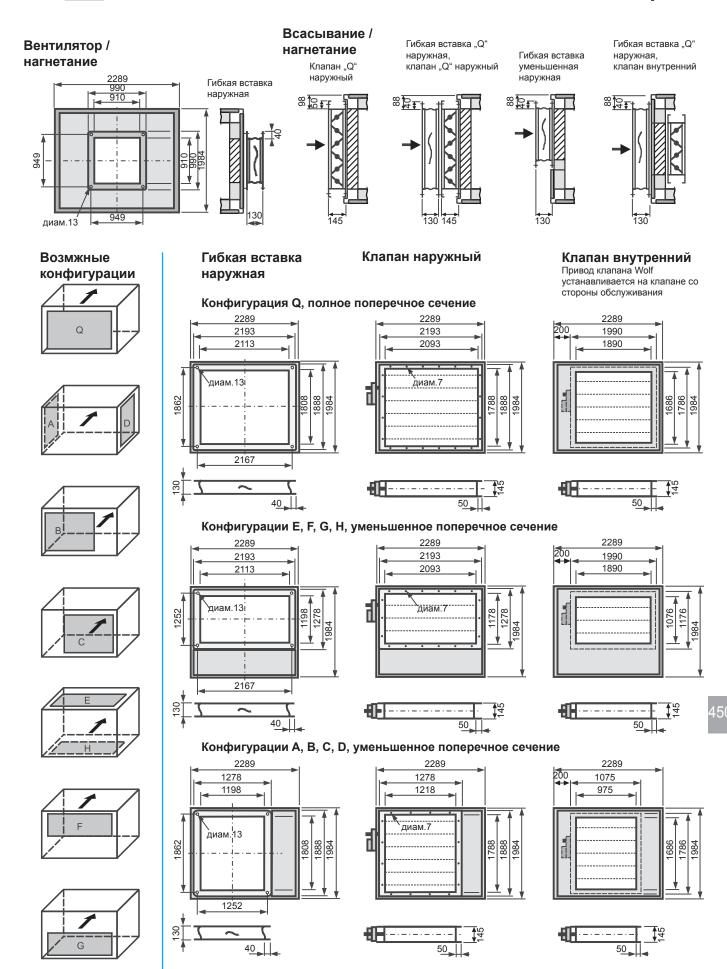
26°С / 49 % отн.вл., 25°С / 50 %отн.вл.


Другие рабочие значения по запросу

Падение давления воды (кПа)

 $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{W}} \quad (M^{3}/4)$ Расход воды

 $\dot{\mathbf{Q}}$ = Мощность в кВт


 $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$

Возможные комбинации клапанов и гибких вставок

KG Top 450

Крутящий момент 1-го клапана согл. EN 1751 KL1: 18 Hм, согл. EN 1751 KL2: 20 Hм

Рекуперация тепла

KG Top 450

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально КGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

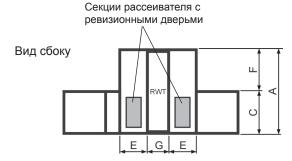
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

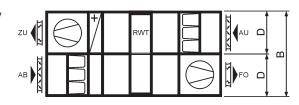
Технические данные по запросу

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

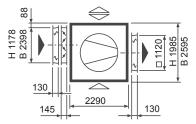


Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

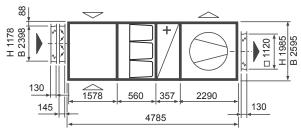

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

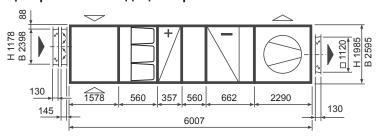
Технические данные по запросу

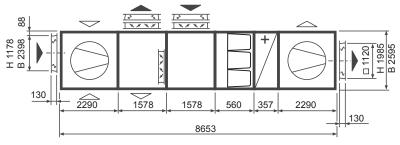
Размеры

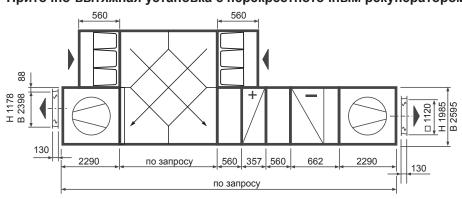


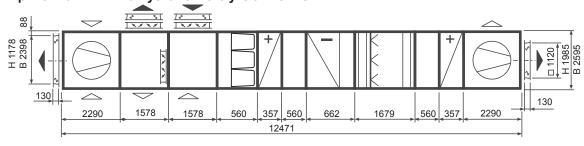
Вид сверху

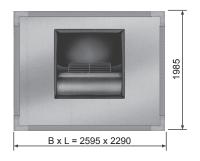


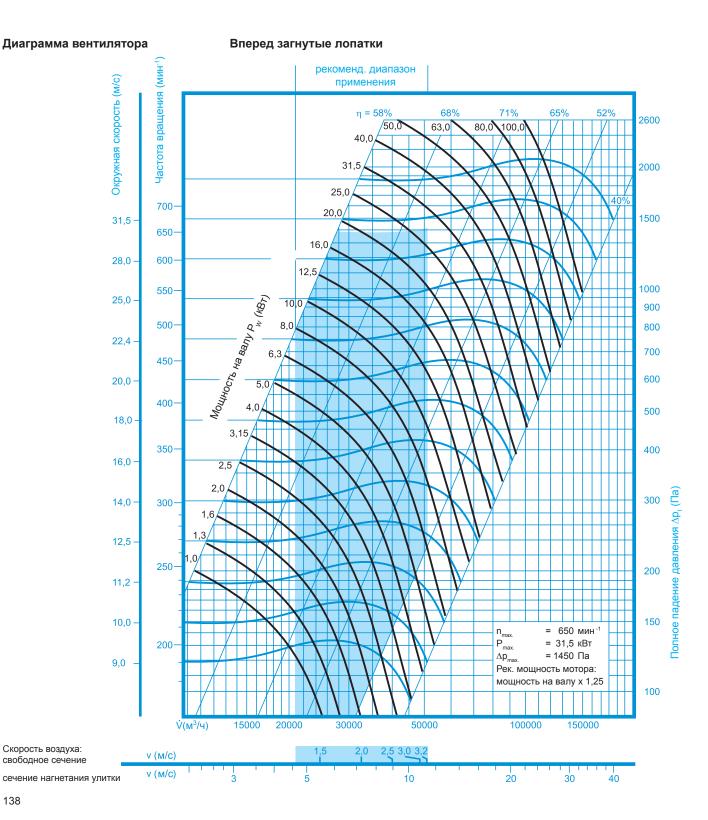

Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором



Приточно-вытяжная установка с увлажнением

Секция вентилятора

Позиция нагнетания:

A, B, C

Вентилятор/мотор:

прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется

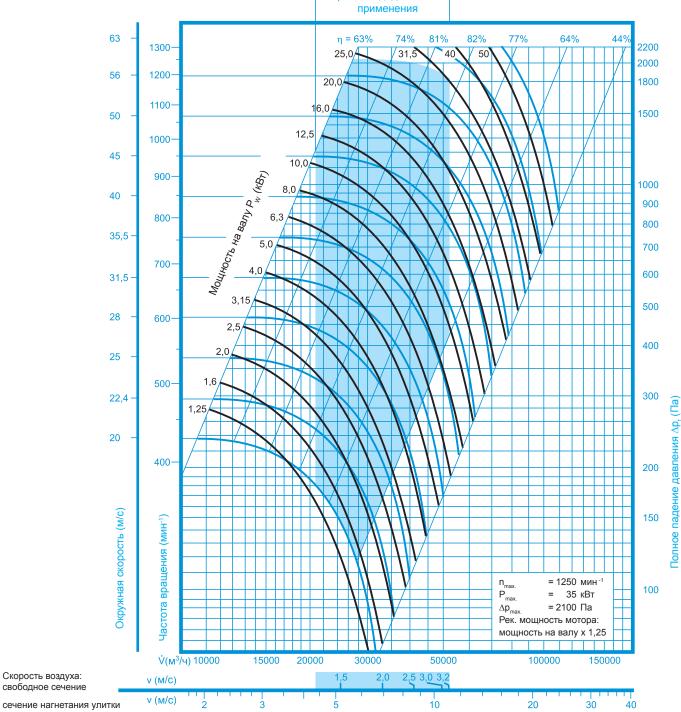
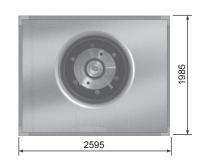

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Диаграмма вентилятора

Скорость воздуха:

свободное сечение

Назад загнутые лопатки


рекоменд. диапазон

Прямоприводной вентилятор

KG Top 510

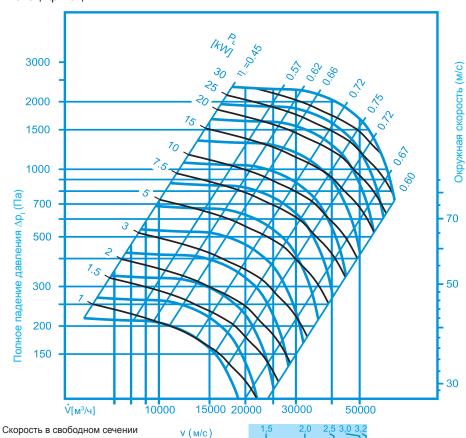
Свободный напор

Внутреннее падение давления

Динамическое давление

Технические данные

Конкретный свободный напор определяется заказчиком.

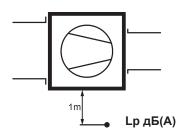

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Типоразмер КG	воздуха падение			ндартные данн пектродвигател	
	M ³ /4	давления Па	мощность кВт	частота вращ. мин ⁻¹	ток А
KG 510	40000	500 1000 1500	11,0 18,5 30,0	3000 3000 3000	22,0 35,0 55,0

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

Диаграмма вентилятора Диаметр колеса 1000 мм Точные данные вентилятора могут быть получены только в заказной спецификации!

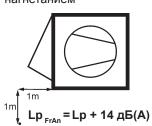

Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\,\,\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

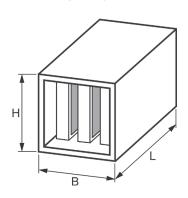
L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

		Полное падение давления ∆р [Па]							
	L _w	500	750	1000	1250	1500	2000		
[M³/4]	30.000	99	102	104	106	108	110		
_M ₃	45.000	100	104	106	108	110	112		
>	50.000	101	105	107	109	111	113		

Уровень звукового давления Lp дБ(A)



Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.


Вперед загнутые лопатки								
• V м³/ч мин ⁻¹	n дБ(A)	Lр м³/ч	V Мин ⁻¹	n дБ(A)	Lp			
	250	51		280	57			
30.000	315	55	45.000	355	58			
	400	60		400	62			
	500 65		560	67				
		Назад загнутые лопатки						
· V	n	Lp	Ů	n	Lp			
м³/ч мин ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)	·			
	560	55		630	60			
30.000	710	61	45.000	800	62			
30.000	900	67	75.500	1000	68			
	1120	72		1120	70			

Уровень звукового давления Lp дБ(A)

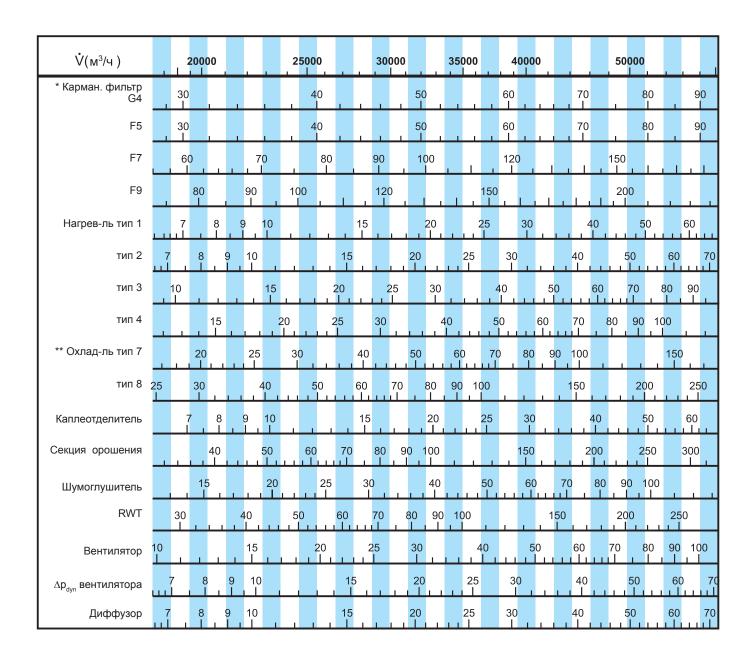
Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Размеры (мм)

Высота Н	Ширина В		Длина	L	
		Тип 11	Тип 12	Тип 13	Тип 14
1984	2595	968	1171	1476	1679

Погашение De дБ(А)


		Октавная полоса (Гц)						
Тур	63	125	250	500	1000	2000	4000	8000
11	4	8	18	20	23	17	14	14
12	5	10	22	24	28	20	15	15
13	8	14	29	31	36	25	17	17
14	9	16	33	35	41	28	19	19

Для 2 подсоединенных шумоглушителей De = De $_1$ + De $_2$ - 3 дБ(A)

Падение давления (Па)

KG Top 510

* Расчет:

начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779:

Фильтр G4, F5, F7: 200 Па

F9: 300 Па

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.

^{**} Охладитель с осушением

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем	
1	2 1/2"	29,0 л	
2	2 1/2"	29,0 л	
3	3"	43,5 л	
4	3"	58,0 л	

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

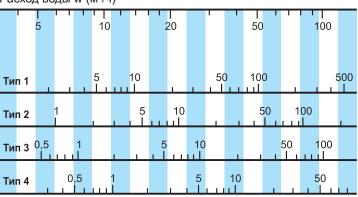
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$$
 (м³/ч)

$$\dot{Q}$$
 = мощность кВт
 $\Delta t_w = t_{WE} - t_{WA}$

Расход воды w (м³/ч)

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Секция охлаждения

L = 662

Тип	Подсоединен.	Объем
7	4"	98,3 л
8	4"	157,3 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

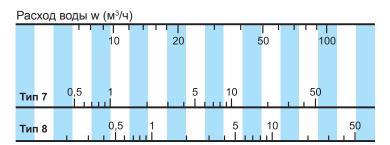
Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

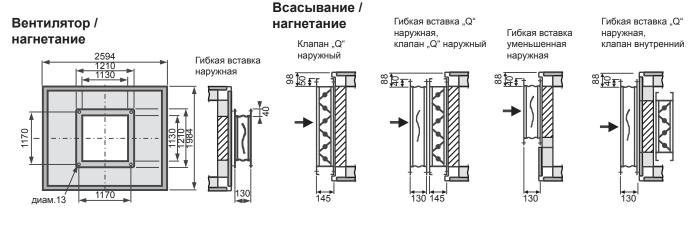
Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. 510 Установки с отводом конденсата требуют установки сифона.

v (m/c)		1,5		2,0		2,5		3,0		3,2	
У (м³/ч)		24 000		32 000		40 000		48 000		51 000	
PKW	t _{∟E}	Q	t _{la}	Q	t _{∟A}	Q	t _{la}	Q	t _{∟A}	Q	t _{∟A}
	°C	кВт	°C								
Охладитель тип 7											
4/8	32	268,0	9,2	337,3	10,4	400,5	11,4	459,0	12,3	481,2	12,6
	28	229,5	8,9	288,0	10,0	341,2	10,9	390,4	11,6	409,0	11,9
	26	205,1	8,5	257,3	9,5	305,0	10,3	348,9	11,0	365,5	11,2
	25	192,9	8,3	242,0	9,3	286,8	10,0	328,1	10,7	343,8	10,9
5/10	32	247,0	10,4	310,2	11,5	367,8	12,5	421,0	13,3	441,2	13,6
	28	208,3	10,1	260,8	11,1	308,4	11,9	352,3	12,7	369,0	12,9
	26	183,8	9,7	230,0	10,6	272,1	11,4	310,7	12,0	325,4	12,2
	25	171,6	9,5	214,7	10,4	253,9	11,1	290,0	11,7	303,6	11,9
6/12	32	225,3	11,5	282,3	12,6	334,3	13,5	382,2	14,3	400,4	14,6
	28	186,4	11,2	232,8	12,2	274,8	12,9	313,5	13,6	328,2	13,9
	26	161,8	10,8	201,9	11,6	238,3	12,4	271,8	12,9	284,5	13,2
	25	149,4	10,2	186,4	11,4	220,0	12,1	250,9	12,6	262,6	12,8
8/12	32	214,5	12,1	270,4	13,1	321,6	13,9	369,0	14,6	387,0	14,9
	28	175,9	11,8	221,1	12,6	262,3	13,3	300,5	13,9	314,9	14,1
	26	151,1	11,4	189,9	12,1	225,4	12,7	258,3	13,2	270,7	13,4
	25	138,6	10,8	174,3	11,8	206,9	12,4	237,1	12,9	248,6	13,1
Охладитель тип 8											
4/8	32	310,0	5,7	401,0	6,3	486,9	6,9	568,2	7,9	599,6	8,1
	28	268,5	5,7	346,3	6,3	419,5	6,8	488,7	7,7	515,3	7,9
	26	240,2	5,6	309,8	6,1	375,2	6,6	437,0	7,0	460,8	7,6
	25	226,1	5,6	291,5	6,1	353,1	6,5	411,2	6,9	433,6	7,5
5/10	32	288,7	7,1	372,4	7,7	451,3	8,2	525,9	8,7	554,6	9,3
	28	246,7	7,1	317,2	7,6	383,4	8,1	445,6	8,6	469,6	8,7
	26	218,2	7,0	280,4	7,5	338,7	8,0	393,7	8,3	414,9	8,5
	25	204,0	7,0	262,0	7,5	316,4	7,9	367,7	8,2	387,5	8,4
6/12	32	266,0	8,5	342,3	9,1	414,0	9,6	481,7	10,0	507,7	10,2
	28	223,5	8,5	286,4	9,0	345,4	9,5	400,9	9,9	422,2	10,0
	26	194,7	8,5	249,3	8,9	300,4	9,3	348,5	9,7	367,0	9,8
	25	180,3	8,4	230,7	8,9	277,9	9,2	322,3	9,6	339,4	9,7
8/12	32	247,1	9,7	319,8	10,1	388,5	10,5	453,7	10,8	478,9	11,0
	28	205,2	9,6	264,7	10,0	320,9	10,3	374,1	10,7	394,6	10,8
	26	176,4	9,5	227,6	9,9	275,8	10,2	321,5	10,4	339,1	10,6
	25	162,0	9,5	209,0	9,8	253,2	10,1	295,2	10,3	311,4	10,4

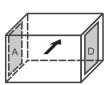

Параметры вход. воздуха: 32°С / 40 % отн.вл., 28°С / 47 % отн.вл. 26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

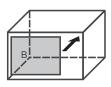
Другие рабочие значения по запросу

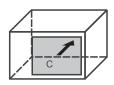
Падение давления воды (кПа)

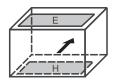

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w} (M^3/4)$$

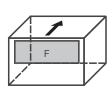
 \dot{Q} = Мощность в кВт $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$

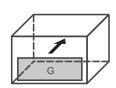


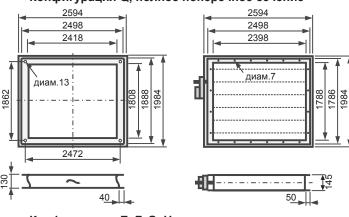

Возможные комбинации клапанов и гибких вставок

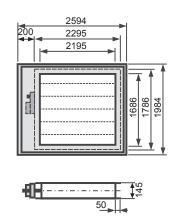

KG Top 510



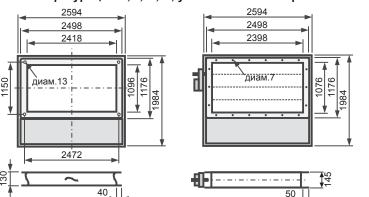


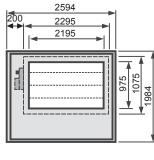


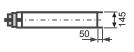


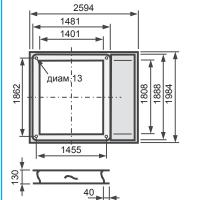


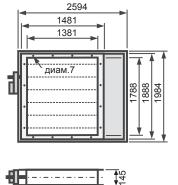
Конфигурация Q, полное поперечное сечение

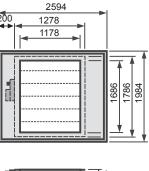


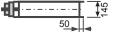

Клапан внутренний


Привод клапана Wolf устанавливается на клапане со стороны обслуживания









Конфигурации А, В, С, D, уменьшенное поперечное сечение

Крутящий момент 1-го клапана согл. EN 1751 KL1: 20 Hм, согл. EN 1751 KL2: 22 Hм

Рекуперация тепла

KG Top 510

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

Корпус

Такой же как и для других секций установки.

Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

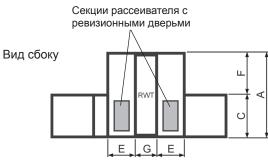
Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

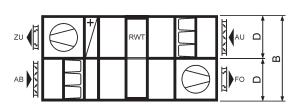
Технические данные по запросу

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

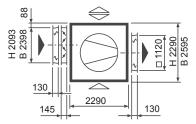


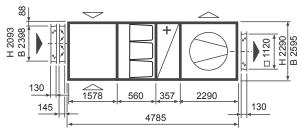
Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

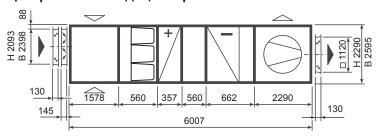

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

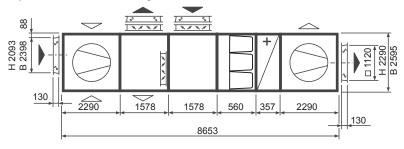
Технические данные по запросу

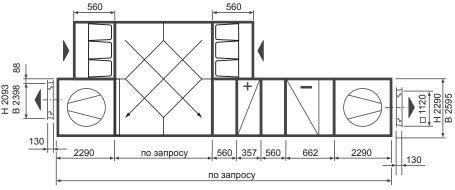
Размеры

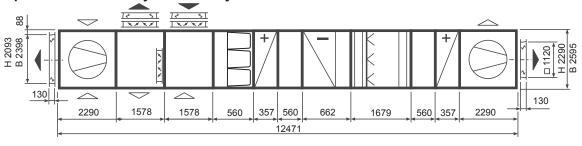

Вид сверху

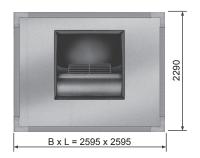



Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка


Приточно-вытяжная установка с перекрестноточным рекуператором

Приточно-вытяжная установка с увлажнением

Диаграмма вентилятора Вперед загнутые лопатки рекоменд. диапазон вращения (мин-Окружная скорость (м/с) применения η = 58% 68% 71% 65% 52% 2600 63,0 80,0 100,0 Частота 31,5 2000 25,0 700-20,0 1500 31,5 650-16,0 600-28,0 12,5 1000 550 25.0 900 500-8,0 800 22,4 700 450-600 20,0 400-500 18,0 -350-400 16,0 2,5 2,0 300 14.0 300-Полное падение давления ∆р, 12,5 250-200 11,2 600 150 10,0 = 650 мин 200-= 31,5 кВт $\Delta p_{\text{max.}}$ = 1450 Па 9,0 Рек. мощность мотора: мощность на валу х 1,25 100 20000 50000 100000 150000

Скорость воздуха:

свободное сечение

сечение нагнетания улитки

v (M/C)

v (M/C)

Скорость воздуха:

свободное сечение

сечение нагнетания улитки

v (M/C)

v (M/C)

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Назад загнутые лопатки Диаграмма вентилятора рекоменд. диапазон применения 63 η = 63% 74% 81% 82% 77% 64% 1300-2200 25,0 31.5 40 50 2000 56 1200 1800 20,0 1100 16,0 1500 50 12,5 1000 45 10,0 900-1000 40 900 800 800 35,5 700 700-600 31,5 500 28 600 400 25 500-300 22,4 20 400 200 вращения (мин⁻¹) 150 Окружная скорость (м/с) $\begin{array}{c} n_{\text{max.}} \\ P_{\text{max.}} \\ \Delta p_{\text{max.}} \end{array}$ = 1250 мин⁻¹ 100 Частота 35 кВт = 2100 Па Рек. мощность мотора: мощность на валу х 1,25 $\dot{V}(M^3/4)$ 10000 30000 50000 20000 100000

2,5 3,0 3,2

10

Толное падение давления ∆р, (Па)

Прямоприводной вентилятор

KG Top 600

Свободный напор

Внутреннее падение давления

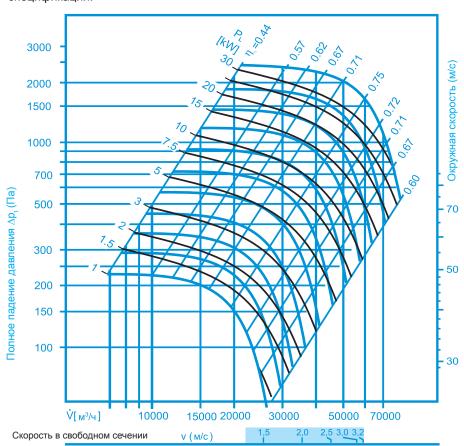
Динамическое давление

Технические данные

Диаграмма вентилятора

Диаметр колеса 1120 мм

Конкретный свободный напор определяется заказчиком.

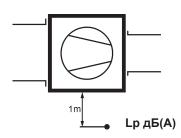

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Типоразмер KG	Расход воздуха	Полное падение давления	Стандартные данные электродвигателя мощность частота вращ.		1Я
	м³/ч	Па	кВт	мин ⁻¹	A
KG 600			18,5 30	1000 1000	36 55

^{*} Скорость вентилятора при частоте (f ≥ 50Гц)

Точные данные вентилятора могут быть получены только в заказной спецификации!

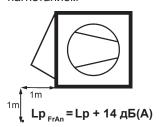

Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\,\,\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

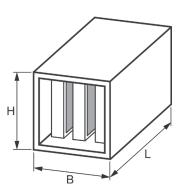
L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

		Полное падение давления ∆р [Па]								
	L _w	500	750	1000	1250	1500	2000			
7	30.000	99	102	104	106	108	110			
[M³/4]	45.000	100	104	106	108	110	112			
>	63.000	102	105	108	110	111	114			

Уровень звукового давления Lp дБ(A)



Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.


		E	Зперед з	агнутые .	лопатки			
V	n	Lp	Ÿ	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)	м³/ч	МИН ⁻¹	дБ(А)
	250	51		280	57		315	64
30.000	315	55	45.000	355	58	63.000	400	65
	400	60		400	62		500	66
1	500	65		560	67		630	70
			Назад	загнуты	е лопатк	и		
Ů	n	Lp	V	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	560	55		630	60		900	64
30.000	710	61	45.000	800	62	63.000	1000	66
	900	67		1000	68		1120	70
	1120	72		1120	70		-	-

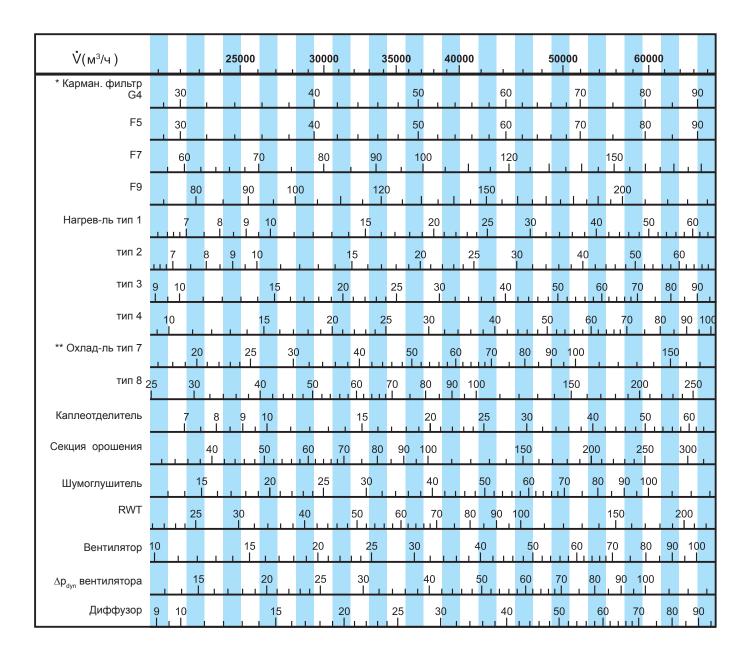
Уровень звукового давления Lp дБ(A)

Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Размеры (мм)

Высота Н	Ширина В	Длина L					
		Тип 11	Тип 14				
2290	2595	968	1171	1476	1679		


Погашение De дБ(А)

		Октавная полоса (Гц)								
Тур	63	63 125 250 500 1000 2000 4000 8000								
11	4	8	18	20	23	17	14	14		
12	5	10	22	24	28	20	15	15		
13	8	14	29	31	36	25	17	17		
14	9	16	33	35	41	28	19	19		

Для 2 подсоединенных шумоглушителей De = $De_1 + De_2 - 3$ дБ(A)

Падение давления (Па)

* Расчет: начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779: Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

** Охладитель с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.

600

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	2 1/2"	33,9 л
2	2 1/2"	33,9 л
3	3"	50,9 л
4	3"	50,9 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

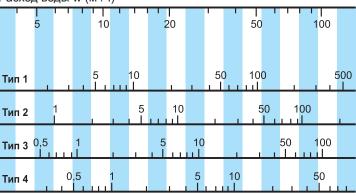
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$$
 (m³/h)

$$\dot{\mathbf{Q}}$$
 = мощность кВт $\Delta \mathbf{t}_{w} = \mathbf{t}_{we} - \mathbf{t}_{wa}$

Расход воды w (м³/ч)

600

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

2290)	•
ے	,	(a)

Секция охлаждения

L = 662

Тип	Подсоединен.	Объем
7	4"	114,1 л
8	4"	182,5 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

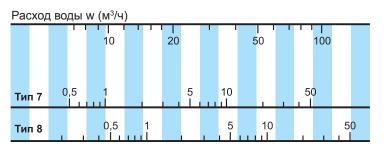
Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

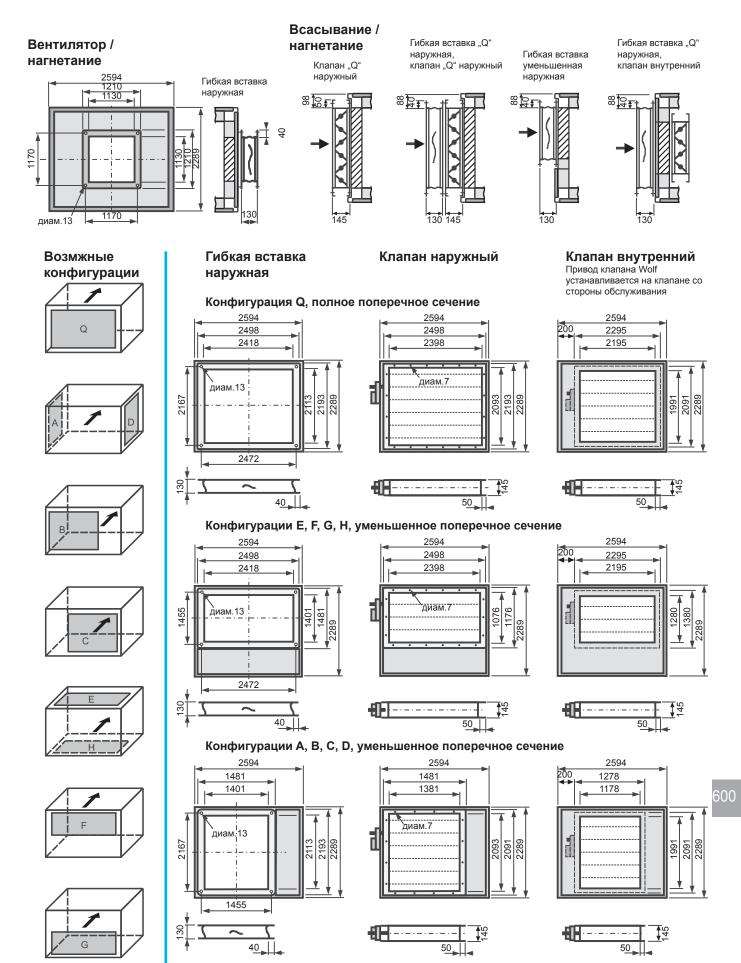
V (M	/c)	1,5		2,0		2,5		3,0		3,2	
V (м	³ /4)	28 00		37 00		46 00		56 00		60 00	_
PKW	t _{∟E} °C	Q кВт	t _∟ °C	Q кВт	t _{LA} °C						
Охладитель тип 7									C	KDI	<u> </u>
	32	312,5	9,2	393,2	10,5	466,8	11,5	534,8	12,3	560,7	12,7
4/8	28	267,5	8,9	335,6	10,0	397,7	10,9	454,9	11,6	476,6	11,9
	26	239,1	8,5	300,0	9,5	355,4	10,3	406,6	11,0	426,0	11,3
	25	224,9	8,4	282,1	9,3	334,3	10,0	382,4	10,7	400,7	10,9
	32	288,0	10,4	361,6	11,6	428,7	12,5	490,6	13,4	514,1	13,7
5/10	28 26	242,9 214,3	10,1 9,7	304,0 268,1	11,1 10,6	359,5 317,1	12,0 11,4	410,6 362,2	12,7 12,0	430,0 379,3	12,9 12,3
	25	200.0	9,5	250,1	10,0	295,9	11,1	337,9	11,7	353,9	11,9
	32	262,7	11,5	329,1	12,6	389,7	13,5	445,4	14,3	466,6	14,6
6/12	28	217,4	11,2	271,3	12,2	320,3	13,0	365,4	13,6	382,5	13,9
	26	188,6	10,8	235,3	11,7	277,8	12,4	316,8	13,0	331,5	13,2
	25	174,2	10,2	217,3	11,4	256,4	12,1	292,4	12,6	306,1	12,8
	32	250,1	12,1	315,3	13,1	374,9	13,9	430,0	14,6	451,0	14,9
8/12	28	205,1	11,8	257,7	12,6	305,8	13,3	350,2	13,9	367,1	14,2
	26 25	176,2 161,7	11,4 10,9	221,4 203,2	12,1 11,9	262,8 241,2	12,7 12,4	301,0 276,4	13,3 12,9	315,6 289,7	13,5 13,1
	20	101,1	10,0	,	,	ель тип		270,1	12,0	200,1	10,1
	32	361,4	5,7	467,4	6,4	567,4	6,9	662,1	7,9	698,7	8,2
4/0	28	312,9	5,7	403,6	6,3	488,8	6,8	569,3	7,8	600,4	8,0
4/8	26	280,0	5,6	361,0	6,1	437,2	6,6	509,1	7,5	536,9	7,7
	25	263,6	5,6	339,8	6,1	411,4	6,5	479,1	6,9	505,2	7,5
	32	336,5	7,1	434,0	7,7	525,8	8,3	612,7	8,7	646,1	9,3
5/10	28 26	287,5 254,3	7,1 7,0	369,6 326,7	7,7 7,5	446,6 394,5	8,2 8,0	519,1 458,6	8,6 8,4	547,1 483,2	9,1 8,5
	25	237,7	7,0	305,3	7,5	368,6	7,9	428,3	8,2	451,3	8,4
	32	310,0	8,5	398,8	9,1	482.3	9,6	561,0	10,1	591.4	10,2
6/12	28	260,5	8,5	333,7	9,1	402,3	9,5	466,8	9,9	491,6	10,1
0/12	26	226,9	8,5	290,4	8,9	349,9	9,3	405,8	9,7	427,3	9,8
	25	210,1	8,5	268,7	8,9	323,6	9,3	375,3	9,6	395,2	9,7
	32	288,0	9,7	372,7	10,1	452,7	10,5	528,7	10,9	558,0	11,0
8/12	28 26	239,1 205,6	9,6 9,6	308,5 265,2	10,0 9,9	373,9 321,3	10,4 10,2	435,8 374,5	10,7 10,5	459,6 395,0	10,8 10,6
	25	188,8	9,5	243,5	9,9	321,3 295,0	10,2	343,8	10,5	362,7	10,6
	20	100,0	0,0	2-10,0	0,0	200,0	10,1	0-10,0	10,4	002,1	10,0


Параметры вход. воздуха: 32°С / 40 % отн.вл., 28°С / 47 % отн.вл. 26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

Другие рабочие значения по запросу

Падение давления воды (кПа)

 $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{w}} \quad (M^{3}/4)$ Расход воды


Q = Мощность в кВт $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$

Возможные комбинации клапанов и гибких вставок

KG Top 600

Крутящий момент 1-го клапана согл. EN 1751 KL1: 23 Hм, согл. EN 1751 KL2: 25 Hм

Рекуперация тепла

KG Top 600

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

3 Внутренний байпас (по запросу)

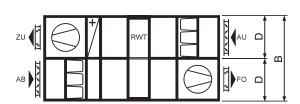
Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

Технические данные по запросу

Описание RWT

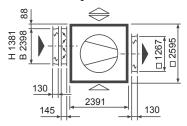
RWT Потоки воздуха горизонтально/вертикально

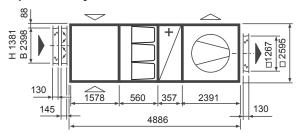
Размеры

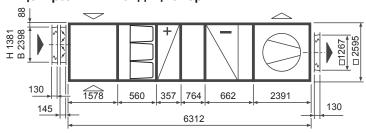

Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

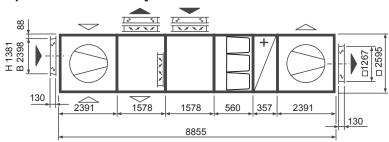
- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

Технические данные по запросу

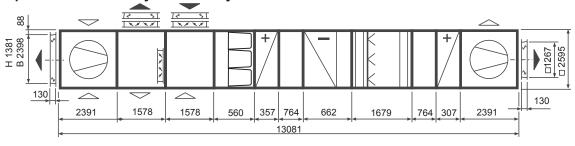

Вид сверху



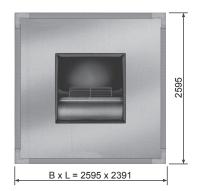

Вытяжная установка


Приточная установка

Центральный кондиционер



Приточно-вытяжная установка



Приточно-вытяжная установка с увлажнением

Диаграмма вентилятора Вперед загнутые лопатки Частота вращения (мин⁻¹ рекоменд. диапазон Окружная скорость (м/с) применения η = 58% 68% 65% 71% 2600 50,0 63,0 80,0 100,0 40,0 31,5 2000 25,0 700-20,0 1500 31,5 650-600 28,0 12, 1000 550 25,0 10,0 500-8,0 800 22,4 700 6,3 450-600 20,0 -400-500 18,0 350-400 16,0 -2,5 2,0 300 14,0 300-12,5 250 200 11,2 150 10,0 -650 мин⁻¹ 680 = 31,5 кВт 200-= 1450 Па $\Delta p_{\text{max.}}$ 9,0 Рек. мощность мотора: мощность на валу х1,25 100

15000

20000

30000

50000

10

100000

20

150000

40

30

v (M/c)

Секция вентилятора

A, B, C Позиция нагнетания:

прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой, Вентилятор/мотор:

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Диаграмма вентилятора Назад загнутые лопатки рекоменд. диапазон применения 63 $\eta = 63\%$ 74% 81% 82% 77% 64% 1300 2200 25,0 31,5 50 2000 56 1200 1800 20,0 1100-16,0 1500 50 2,5 1000 45 10,0 900 1000 40 900 800-800 35,5 700 700-600 31,5 500 28 600 400 25 500 300 22,4 20 400 200 150 вращения (мин⁻¹) Окружная скорость (м/с)

Толное падение давления ∆р, 680

100

= 1250 мин⁻¹

= 35 кВт

= 2100 Па Рек. мощность мотора: мощность на валу х 1,25

100000

P_{max}

 $\Delta p_{\text{max.}}$

Скорость воздуха: свободное сечение

сечение нагнетания улитки

Частота

 $\dot{V}(M^3/4)$ 10000

15000

20000

2,5 3,0 3,2 v (M/c) v (M/C) 10 20

Прямоприводной вентилятор

KG Top 680

Свободный напор

Внутреннее падение давления

Динамическое давление

Конкретный свободный напор определяется заказчиком.

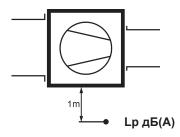
См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Технические данные по запросу

Шум

KG Top 680

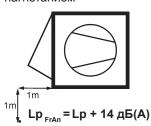

Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\,\,\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

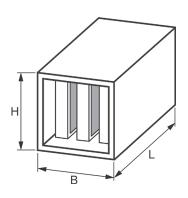
L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

		Полное падение давления ∆р [Па]								
	L _w	500	750	1000	1250	1500	2000			
<u>-</u>	40.000	100	103	106	108	110	112			
[M³/4]	60.000	101	105	107	110	111	114			
>	68.000	102	106	108	111	112	115			

Уровень звукового давления Lp дБ(A)



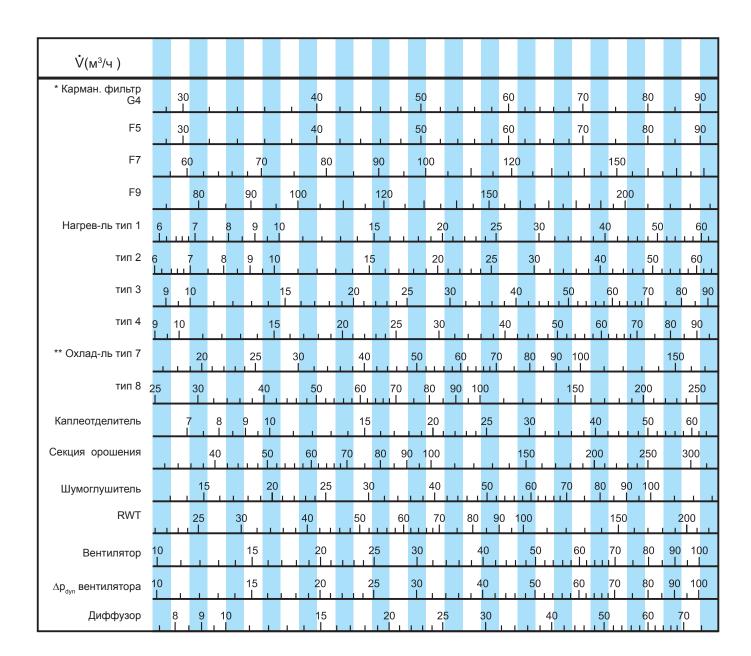
Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.


		Вперед загн	утые лопатк	и	
Ѷ м³/ч	n мин ⁻¹	Lр дБ(А)	° м³/ч	n мин ⁻¹	Lр дБ(A)
	224	50		250	57
40.000	280	54	60.000	315	58
	355	59		400	62
	450	450 64		500	66
		Назад загн	утые лопаті	ки	
V м³/ч	n мин ⁻¹	Lр дБ(А)	V м³/ч	n мин ⁻¹	Lp дБ(A)
	500	54		630	59
40.000	630	59	50.000	800	64
40.000	800	66	33.300	1000	70
	1000	72		1120	72

Уровень звукового давления Lp дБ(A)

Со свободным всасыванием или нагнетанием

Секция шумоглушителя


Размеры (мм)

Высота Н	Ширина В	Длина L					
		Тип 11 Тип 12 Тип 13 Тип 14					
2595	2595	968	1171	1476	1679		

Погашение De дБ(А)

		Октавная полоса (Гц)									
Тур	63	63 125 250 500 1000 2000 4000						8000			
11	4	8	18	20	23	17	14	14			
12	5	10	22	24	28	20	15	15			
13	8	14	29	31	36	25	17	17			
14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей $De = De_1 + De_2 - 3 дБ(A)$

* Расчет: начальное пад. давл. + конечное пад давл.

Рек. конечное падение давления по EN 13779: Фильтр G4, F5, F7: 200 Па F9: 300 Па

** Охладитель с осушением

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	2 1/2"	38,8 л
2	2 1/2"	38,8 л
3	3"	58,2 л
4	3"	58,2 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

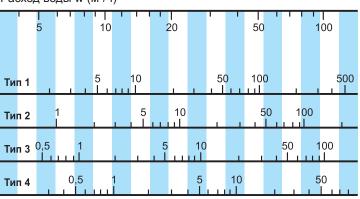
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Расход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_W}$$
 (m³/h)

 $\dot{\mathbf{Q}}$ = мощность кВт $\Delta \mathbf{t}_{w}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

Расход воды w (м³/ч)

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Секция охлаждения

L = 662

Тип	Подсоединен.	Объем
7	4"	131,6 л
8	4"	210,6 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

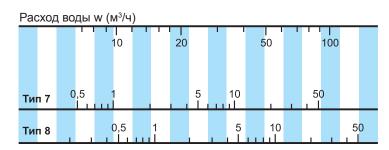
Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M/	'c)	1,5		2,0		2,5		3,0		3,2	
Ϋ́ (M ³		32 00	00	43 00	00	53 00		64 00	00	68 00	00
PKW	t _{∟E} °C	Q	t _{LA} °C	Q	t _{∟A} °C	Q	t _{LA} °C	Q	t _{LA} °C	Q	t _{∟A} °Ĉ
	°C	кВт	°C	кВт		кВт		кВт	°C	кВт	°C
	0.0		0.0			ель тип		212.2	40.0	0.10 =	10.0
	32	357,8	9,2	450,4	10,4	534,9	11,4	613,0	12,3	642,7	12,6
4/8	28 26	306,4 273,9	8,9 8,5	384,6 343,7	10,0 9,5	455,8 407,4	10,8 10,3	521,5 466,1	11,6 11,0	546,4 488,4	11,9 11,2
	25	257,6	8,3	323,3	9,3	383,2	10,3	438,4	10,7	459,4	10,9
	32	329,9	10,3	414,3	11,5	491,3	12,5	562,4	13,3	589,5	13,6
	28	278,3	10,3	348,4	11,3	412,1	11,9	470,8	12,6	493,1	12,9
5/10	26	245,6	9,7	307,3	10,6	363,5	11,3	415,3	12,0	434,9	12,2
	25	229,2	9,5	286,8	10,3	339,3	11,1	387,5	11,7	405,9	11,9
	32	301,0	11,4	377,2	12,6	446,7	13,5	510,8	14,3	535,1	14,5
6/12	28	249,1	11,2	311,0	12,1	367,3	12,9	419,1	13,6	438,7	13,8
	26	216,2	10,8	269,8	11,6	318,5	12,3	363,3	12,9	380,3	13,1
	25	199,7	10,2	249,2	11,4	294,1	12,0	335,4	12,6	351,1	12,8
	32	286,5	12,1	361,2	13,1	429,6	13,9	492,9	14,6	517,0	14,9
8/12	28	234,9	11,8	295,3	12,6	350,5	13,3	401,5	13,9	420,8	14,1
	26	201,8	11,4	253,7	12,1	301,2	12,7	345,1	13,2	361,8	13,4
	25	185,2	10,8	232,9	11,8	276,5	12,4	316,9	12,9	332,2	13,1
						ель тип					
	32	413,4	5,7	534,8	6,3	649,3	6,9	757,9	7,9	799,8	8,1
4/8	28	358,0	5,7	461,8	6,3	559,5	6,8	651,8	7,7	687,3	7,9
	26 25	320,3 301,5	5,6 5,6	413,1 388,8	6,1 6,1	500,4 470,8	6,6 6,5	582,8 548,4	7,0 6,9	614,6 578,3	7,6 7,5
								· ·			
	32 28	384,9 328,9	7,1 7,1	496,6 423,0	7,7 7,6	601,8 511,2	8,2	701,3 594,3	8,7	739,7 626,4	9,3 8,7
5/10	26	290.9	7,1	373,9	7,6	451,6	8,1 8,0	525,0	8,6 8,3	553,3	8,5
	25	271,9	7,0	349,4	7,5	421,9	7,9	490,4	8,2	516,7	8,4
	32	354,7	8,5	456,4	9,1	552,0	9,6	642,3	10,0	677,1	10,2
	28	298,0	8,5	381,9	9,0	460,5	9,5	534,5	9,9	563.0	10,2
6/12	26	259,6	8,5	332,4	8,9	400,5	9,3	464,7	9,7	489,3	9,8
	25	240,4	8,4	307,6	8,9	370,5	9,2	429,7	9,6	452,5	9,7
	32	329,5	9,7	426,4	10,1	518,1	10,5	605,1	10,8	638,7	11,0
040	28	273,6	9,6	353,0	10,0	427,9	10,3	498,8	10,7	526,2	10,8
8/12	26	235,2	9,6	303,4	9,9	367,8	10,2	428,7	10,4	452,2	10,5
	25	216,0	9,5	278,6	9,8	337,6	10,1	393,6	10,3	415,2	10,4

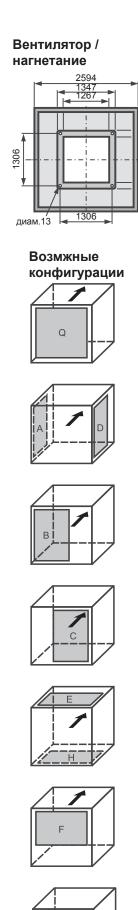
Параметры вход. воздуха: 32°С / 40 % отн.вл., 28°С / 47 % отн.вл. 26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

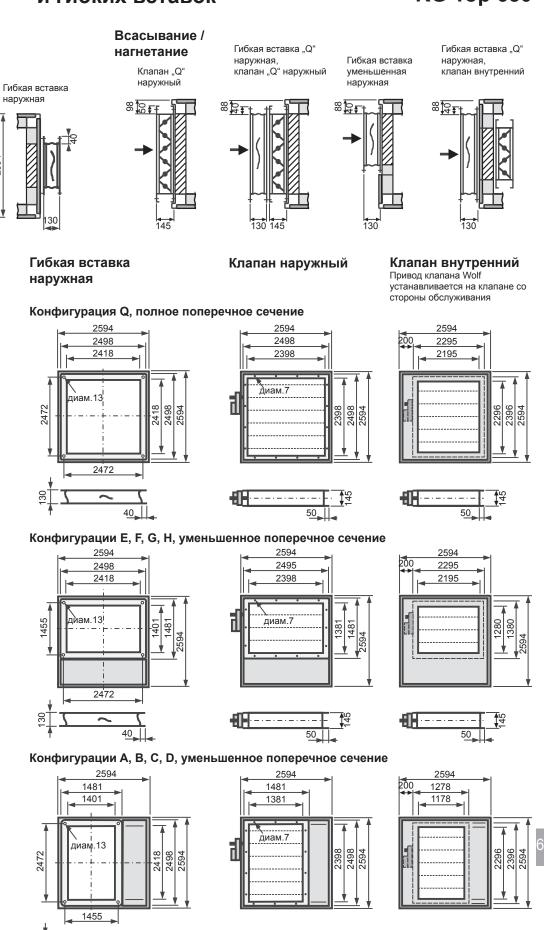

Другие рабочие значения по запросу

Падение давления воды (кПа)

 $w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{w}} \quad (M^{3}/4)$ Расход воды

Q = Мощность в кВт $\Delta t_{_{\!\!\mathsf{W}}}$ = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$





наружная

Возможные комбинации клапанов и гибких вставок

KG Top 680

Крутящий момент 1-го клапана согл. EN 1751 KL1: 23 Hм, согл. EN 1751 KL2: 25 Hм

Рекуперация тепла

KG Top 680

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

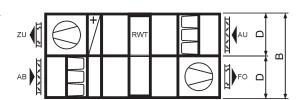
Технические данные по запросу

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.

- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора.
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

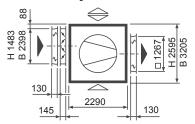

Технические данные по запросу

Размеры

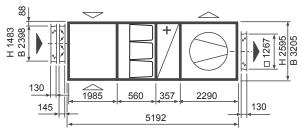
Вид сбоку

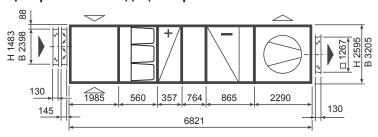
Секции рассеивателя с ревизионными дверьми

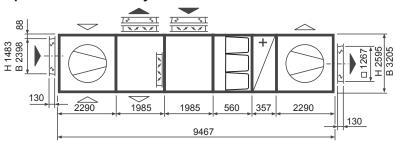
Вид сверху

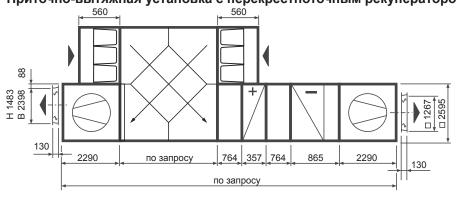

166

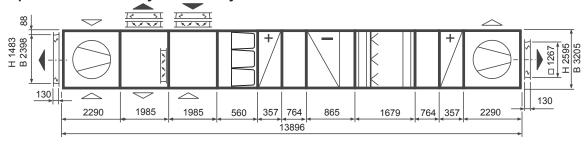
680



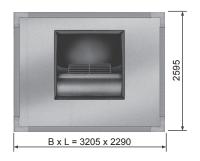

Вытяжная установка


Приточная установка


Центральный кондиционер


Приточно-вытяжная установка

Приточно-вытяжная установка с перекрестноточным рекуператором



Приточно-вытяжная установка с увлажнением

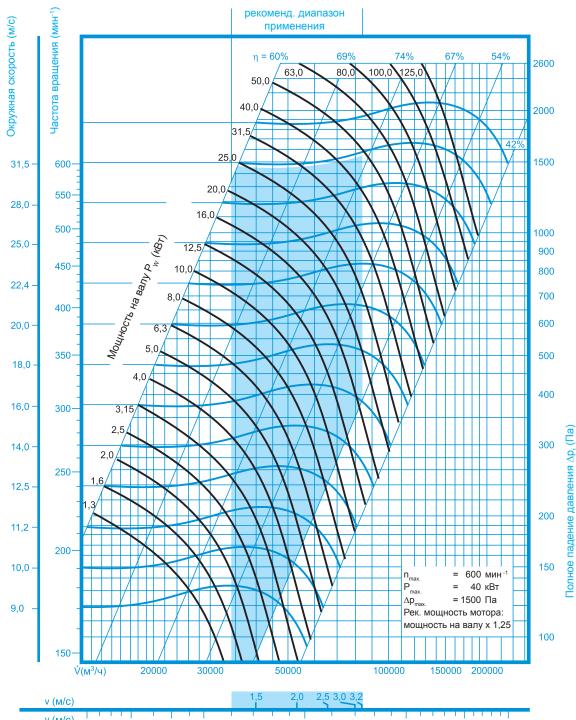


Диаграмма вентилятора

Вперед загнутые лопатки

Секция вентилятора

A, B, C Позиция нагнетания:

прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой, Вентилятор/мотор:

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Назад загнутые лопатки Диаграмма вентилятора рекоменд. диапазон применения 63 1200 η = 64% 75% 80% 83% 80% 64% 459 2200 31,5/ 40,0 50,0 63,0 80,0 100,0 2000 1100 56 25,0 1800 1000 20,0 1500 50 16,0 900 45 12,5 800 1000 10,0 40 900 800 700-35,5 700 600 31,5 600 500 28 3,15 400 500-25 300 22,4 Толное падение давления ∆р, (Па` 20 200 150 Окружная скорость (м/с) Частота вращения (мин⁻¹) n_{max.} P_{max.} = 1150 мин⁻¹ 100 45 кВт $\Delta p_{\text{max.}} = 2100 \ \Pi a$ Рек. мощность мотора:

Скорость воздуха:

50000

30000

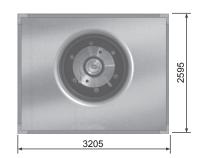
15000

У(м³/ч)

200000

мощность на валу х 1,25

150000


100000

Прямоприводной вентилятор

KG Top 850

Свободный напор

Конкретный свободный напор определяется заказчиком.

Внутреннее падение давления

См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

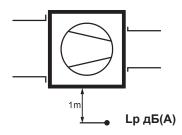
Динамическое давление

Не требуется учитывать динамическое давление для расчетов.

Технические данные по запросу

Шум

KG Top 850

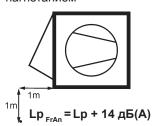

Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\,\,\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

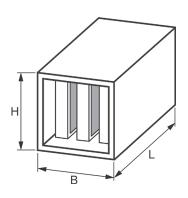
L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

			Полное падение давления ∆р [Па]							
	L _w	500	750	1000	1250	1500	2000			
٦]	40.000	100	103	106	108	110	112			
[M ³ /4]	60.000	101	105	107	110	111	114			
>	80.000	103	106	109	111	112	115			

Уровень звукового давления Lp дБ(A)



Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.


			Вперед з	агнутые	лопатки			
Ů	n	Lp	V	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	224	50		250	57		280	63
40.000	280	54	60.000	315	58	80.000	355	63
10.000	355	59		400	62		450	65
	450	64		500	66		560	69
			Назад з	вагнутые	лопатки			
Ů	n	Lp	Ů	n	Lp	V	n	Lp
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)
	500	54		630	59		800	63
40.000	630	59	60.000	800	64	80.000	900	67
	800	66		1000	70		1000	69
	1000	72		1120	72		1120	71

Уровень звукового давления Lp дБ(A)

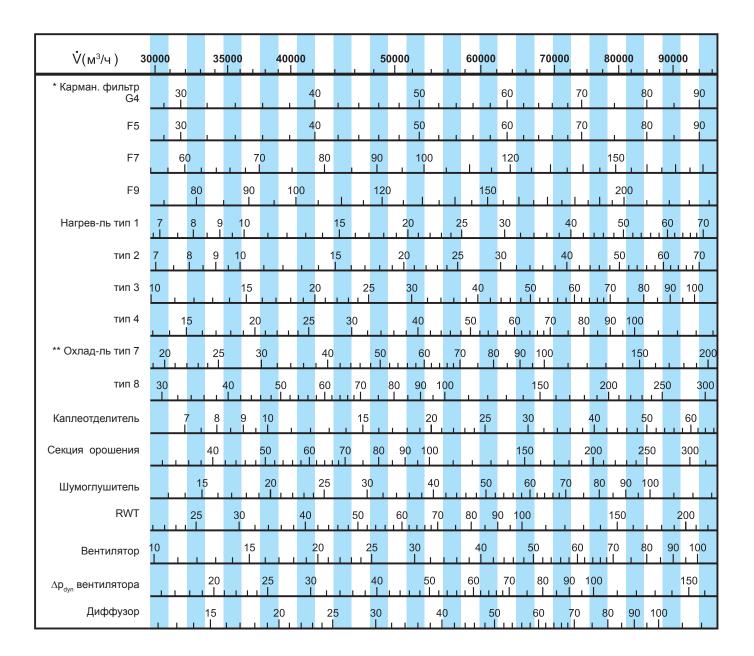
Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Размеры (мм)

Высота Н	Ширина В	Длина L						
		Тип 11	Тип 12	Тип 13	Тип 14			
2595	3205	968	1171	1476	1679			

Погашение De дБ(А)


			_		(E)						
		Октавная полоса (Гц)									
Тур	63	125	250	500	1000	2000	4000	8000			
11	4	8	18	20	23	17	14	14			
12	5	10	22	24	28	20	15	15			
13	8	14	29	31	36	25	17	17			
14	9	16	33	35	41	28	19	19			

Для 2 подсоединенных шумоглушителей $De = De_1 + De_2 - 3 дБ(A)$

000

Падение давления (Па)

* Расчет:

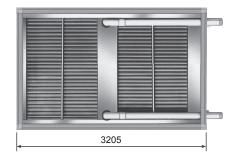
начальное пад. давл. + конечное пад давл.

2

Рек. конечное падение давления по EN 13779: Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.


^{**} Охладитель с осушением

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Описание

теплообменник с медными трубками и алюминиевыми ребрами, стальной коллектор, или медный как альтернатива

Тип	Подсоединения	Объем
1	2"	2 х 23,0 л
2	3"	2 х 23,0 л
3	3"	2 х 34,6 л
4	3"	2 х 46,2 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

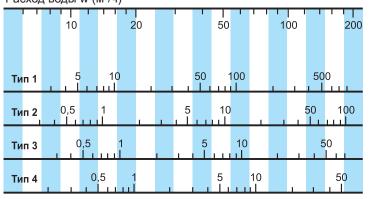
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

$$\dot{\mathbf{Q}}$$
 = мощность кВт $\Delta \mathbf{t}_{w}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

Расход воды w (м³/ч)

Секция охлаждения

KG Top 850

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

2595	•	•
	,	O L

Секция охлаждения

L = 662

Тип	Подсоединен.	Объем
7	4"	2 х 77,8 л
8	4"	2 х 124,5 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

Охладитель с адаптерами для сливного клапана и воздушного вентиля

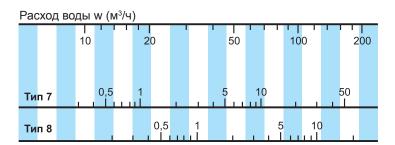
Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

4/8 28 368,3 9,4 460,4 10,5 544,0 11,4 620,9 12,2 650,0 12,4 26 328,1 9,0 410,1 10,0 484,6 10,8 553,0 11,5 579,0 11,8 25 308,1 8,8 385,0 9,8 454,9 10,5 519,1 11,2 543,5 11,4 5/10 28 330,9 10,6 412,5 11,7 486,3 12,5 554,2 13,2 579,8 13,5 26 290,6 10,2 362,1 11,1 426,8 11,9 486,2 12,5 508,7 12,8 25 270,5 10,0 336,9 10,9 397,1 11,6 452,3 12,2 473,2 12,4 6/12 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 534,7 13,1 401,7 13,3	V (M.	/c)	1,5		2,0		2,5		3,0		3,2	
FRW °C κBT %C κBT %C %	V (м	³ /4)	40 00	00	53 00	00	66 00	00	80 00	00	85 00	00
OXADARTEND TURN 7 A/8 32 431,9 9,8 541,6 11,0 641,5 12,0 733,5 12,9 768,4 13,2 43,2 28 368,3 9,4 460,4 10,5 544,0 11,4 620,9 12,2 650,0 12,4 26 328,1 9,0 410,1 10,0 484,6 10,8 553,0 11,5 579,0 11,8 253,0 11,2 543,5 11,4 660,5 13,9 697,9 14,2 543,5 11,4 666,5 13,9 697,9 14,2 543,5 11,4 666,5 13,9 697,9 14,2 543,5 11,1 266,5 12,9 667,9 14,2 554,2 13,2 579,8 13,5 579,0 11,8 363,4 12,1 484,9 10,5 554,2 13,2 579,8 13,5 579,8 13,5 579,8 13,5 579,8 13,5 586,3 12,5 554,2 13,2 554,2 13,2	PKW	t _{LE}		t _{LA}		t _{LA}		t _{LA}		t _{LA}		t _{LA}
4/8 28 368,3 9,4 460,4 10,5 544,0 11,4 620,9 12,2 650,0 12,4 26 328,1 9,0 410,1 10,0 484,6 10,8 553,0 11,5 579,0 11,8 25 308,1 8,8 385,0 9,8 454,9 10,5 519,1 11,2 543,5 11,4 5/10 28 330,9 10,6 412,5 11,7 486,3 12,5 554,2 13,2 579,8 13,5 26 290,6 10,2 362,1 11,1 426,8 11,9 486,2 12,5 508,7 12,8 25 270,5 10,0 336,9 10,9 397,1 11,6 452,3 12,2 473,2 12,4 6/12 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 534,7 13,1 401,7 13,3		U	KDI	U					KDI	C	KDI	U
26 328,1 9,0 410,1 10,0 484,6 10,8 553,0 11,5 579,0 11,8 25 308,1 8,8 385,0 9,8 454,9 10,5 519,1 11,2 543,5 11,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,		32	431,9	9,8					733,5	12,9	768,4	13,2
25 308,1 8,8 385,0 9,8 454,9 10,5 519,1 11,2 543,5 11,4 32 394,7 10,9 493,8 12,1 583,8 13,1 666,5 13,9 697,9 14,2 28 330,9 10,6 412,5 11,7 486,3 12,5 554,2 13,2 579,8 13,5 26 290,6 10,2 362,1 11,1 426,8 11,9 486,2 12,5 508,7 12,8 25 270,5 10,0 336,9 10,9 397,1 11,6 452,3 12,2 473,2 12,4 32 356,4 12,1 444,7 13,2 524,9 14,1 598,5 14,9 626,4 15,2 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 437,3 13,7 25 231,7 10,8 287,5 11,9 338,0 12,6 384,2 13,1 401,7 13,3 32 343,7 12,5 431,6 13,5 511,9 14,4 586,0 15,1 614,1 15,3 8/12 28 279,9 12,2 350,5 13,0 414,6 13,7 473,5 14,3 495,9 14,5 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 **Oxaadurens tun 8** **Oxaadurens tun 8** **Oxaadurens tun 8** **Oxaadurens tun 8** 32 505,1 6,2 650,8 6,8 675,9 7,3 785,0 8,2 827,1 8,5 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,5 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 5/10 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 24 426,2 9,2 545,8 9,8 657,6 10,3 762,2 10,7 802,5 7,6 6/12 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2	4/8	28	368,3	9,4		10,5	544,0	11,4	620,9	12,2	650,0	12,4
5/10 32 394,7 10,9 493,8 12,1 583,8 13,1 666,5 13,9 697,9 14,2 28 330,9 10,6 412,5 11,7 486,3 12,5 554,2 13,2 579,8 13,5 26 290,6 10,2 362,1 11,1 426,8 11,9 486,2 12,5 508,7 12,8 25 270,5 10,0 336,9 10,9 397,1 11,6 452,3 12,2 473,2 12,4 6/12 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,7 427,5 13,5 486,3 14,2 508,6 14,4 8/12 231,7 10,8 287,5 11,9 338,0		-	,				,		,			
5/10 28 330,9 10,6 412,5 11,7 486,3 12,5 554,2 13,2 579,8 13,5 26 290,6 10,2 362,1 11,1 426,8 11,9 486,2 12,5 508,7 12,8 25 270,5 10,0 336,9 10,9 397,1 11,6 452,3 12,2 473,2 12,4 6/12 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 437,3 13,7 25 231,7 10,8 287,5 11,9 338,0 12,6 384,2 13,1 401,7 13,3 8/12 28 279,9 12,2 350,5 13,0 414,6 13,7 473,5 14,3 495,9 14,5 8/12 28 435,8 6,2 559,8 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
26 290,6 10,2 362,1 11,1 426,8 11,9 486,2 12,5 508,7 12,8 25 270,5 10,0 336,9 10,9 397,1 11,6 452,3 12,2 473,2 12,4 33 356,4 12,1 444,7 13,2 524,9 14,1 598,5 14,9 626,4 15,2 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 437,3 13,7 25 231,7 10,8 287,5 11,9 338,0 12,6 384,2 13,1 401,7 13,3 32 343,7 12,5 431,6 13,5 511,9 14,4 586,0 15,1 614,1 15,3 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 14,5 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 28 435,8 6,2 559,8 6,8 675,9 7,3 785,0 8,2 827,1 8,5 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 616,8 8,9 616,8 8,9 617,6 46,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 28 335,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2					,		,		,			
25 270,5 10,0 336,9 10,9 397,1 11,6 452,3 12,2 473,2 12,4 32 356,4 12,1 444,7 13,2 524,9 14,1 598,5 14,9 626,4 15,2 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 437,3 13,7 25 231,7 10,8 287,5 11,9 338,0 12,6 384,2 13,1 401,7 13,3 32 343,7 12,5 431,6 13,5 511,9 14,4 586,0 15,1 614,1 15,3 32 28 279,9 12,2 350,5 13,0 414,6 13,7 473,5 14,3 495,9 14,5 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 Охладитель тип 8 Охладитель тип 8 28 435,8 6,2 559,8 6,8 787,8 7,4 917,1 8,4 966,9 8,7 28 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 32 466,8 7,7 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 32 466,8 7,7 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 32 439,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 26 339,5 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 27 32 426,2 9,2 545,8 9,8 657,6 10,3 762,2 10,7 802,5 10,9 28 335,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 28 335,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2	5/10		,		,		,					
6/12 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 437,3 13,7 25 231,7 10,8 287,5 11,9 338,0 12,6 384,2 13,1 401,7 13,3 32 343,7 12,5 431,6 13,5 511,9 14,4 586,0 15,1 614,1 15,3 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 **Oxnamutenb tun 8** **Oxnamutenb tun 8** **Oxnamutenb tun 8** **A** **								-			,	
6/12 28 292,4 11,8 363,4 12,7 427,5 13,5 486,3 14,2 508,6 14,4 26 251,9 11,0 312,8 12,2 367,8 12,9 418,3 13,5 437,3 13,7 25 231,7 10,8 287,5 11,9 338,0 12,6 384,2 13,1 401,7 13,3 34,7 12,5 431,6 13,5 511,9 14,4 586,0 15,1 614,1 15,3 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 **Oxnagutent tun 8** **Oxnagutent tun 10** **Oxnagutent tun 10*		32									626.4	
8/12 25 231,7 10,8 287,5 11,9 338,0 12,6 384,2 13,1 401,7 13,3 32 343,7 12,5 431,6 13,5 511,9 14,4 586,0 15,1 614,1 15,3 28 279,9 12,2 350,5 13,0 414,6 13,7 473,5 14,3 495,9 14,5 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 **Oxnagutene tun 8** **Oxnagutene tun 8** **Oxnagutene tun 8** **A 917,1 8,4 966,9 8,7 23,3 23,9 12,8 370,1 13,3 387,7 13,4 24,8 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 26 349,5 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 125 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 61	6/12						,				,	14,4
8/12					,			-			,	13,7
8/12 28 279,9 12,2 350,5 13,0 414,6 13,7 473,5 14,3 495,9 14,5 26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 4/8 32 505,1 6,2 650,8 6,8 787,8 7,4 917,1 8,4 966,9 8,7 28 435,8 6,2 559,8 6,8 675,9 7,3 785,0 8,2 827,1 8,5 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 47 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 5/10 28 399,8 7,6 507,6			-				-					
26 239,1 11,7 299,3 12,5 354,2 13,1 404,7 13,6 423,9 13,8 Охладитель тип 8 Охладитель тип 8 «На За 505,1 6,2 650,8 6,8 787,8 7,4 917,1 8,4 966,9 8,7 28 435,8 6,2 559,8 6,8 675,9 7,3 785,0 8,2 827,1 8,5 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 32 466,8 7,7 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 5/10 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0		-	,			,	,		,		,	
25 218,7 11,3 273,7 12,2 323,9 12,8 370,1 13,3 387,7 13,4 Охладитель тип 8 32 505,1 6,2 650,8 6,8 787,8 7,4 917,1 8,4 966,9 8,7 28 435,8 6,2 559,8 6,8 675,9 7,3 785,0 8,2 827,1 8,5 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 32 466,8 7,7 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 5/10 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 4/10 24 32,9 7,5 416,4 <th>8/12</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>,</th> <th></th> <th>,</th> <th></th>	8/12							-	,		,	
Охладитель тип 8 4/8 32 505,1 6,2 650,8 6,8 787,8 7,4 917,1 8,4 966,9 8,7 28 435,8 6,2 559,8 6,8 675,9 7,3 785,0 8,2 827,1 8,5 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 32 466,8 7,7 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 5/10 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 5/10 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5												
4/8 28 435,8 6,2 559,8 6,8 675,9 7,3 785,0 8,2 827,1 8,5 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 32 426,2 9,2 545,8 9,8 657,6 10,3 762,2 10,7 802,5 10,9 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2			,	•						•		•
4/8 26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 610,8 8,9 612 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2		32	505,1	6,2	650,8	6,8	787,8	7,4	917,1	8,4	966,9	8,7
26 388,9 6,1 499,4 6,6 602,8 7,1 699,9 7,5 737,3 8,1 25 365,5 6,0 469,2 6,5 566,2 7,0 657,4 7,4 692,5 7,6 32 466,8 7,7 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 6/12 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5	1/9		,	6,2	,	6,8	,	7,3	,	8,2	,	8,5
5/10 32 466,8 7,7 599,6 8,3 724,1 8,9 841,4 9,3 886,5 9,5 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 6/12 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 </th <th>4/0</th> <th></th>	4/0											
5/10 28 396,8 7,6 507,6 8,2 611,2 8,7 708,6 9,2 746,0 9,3 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 6/12 32 426,2 9,2 545,8 9,8 657,6 10,3 762,2 10,7 802,5 10,9 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0												
6/12 26 349,5 7,6 446,8 8,1 537,6 8,5 623,0 8,9 655,8 9,1 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 6/12 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2					,			-	,		,	
6/12 25 325,9 7,5 416,4 8,0 500,9 8,4 580,3 8,8 610,8 8,9 6/12 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2	5/10				,		,	-	,		,	
6/12 32 426,2 9,2 545,8 9,8 657,6 10,3 762,2 10,7 802,5 10,9 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2			,		,						,	
6/12 28 355,2 9,1 452,9 9,7 543,9 10,2 629,1 10,6 661,8 10,7 26 26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2		32	426,2	9,2	545,8	9,8	657,6	10,3	762,2	10,7	802,5	10,9
26 307,5 9,1 391,6 9,6 469,7 10,0 543,0 10,3 571,1 10,5 25 283,6 9,0 360,8 9,5 432,7 9,9 499,9 10,2 525,7 10,3 32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2	6/12					9,7					,	10,7
32 400,0 10,1 515,7 10,5 624,5 11,0 727,4 11,3 767,1 11,5 28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2	0/12							-			,	10,5
28 330,1 10,0 424,3 10,4 512,6 10,8 595,8 11,1 627,8 11,2												
					,		,				,	
1 9/1	8/12	26	282,6	9,9	424,3 362,8	10,4	438,1	10,8	509,8	10,9	627,8 536,5	11,2
												10,9

Параметры вход. воздуха: 32° С / 40 % отн.вл., 28° С / 47 % отн.вл. 26° С / 49 % отн.вл., 25° С / 50 %отн.вл.

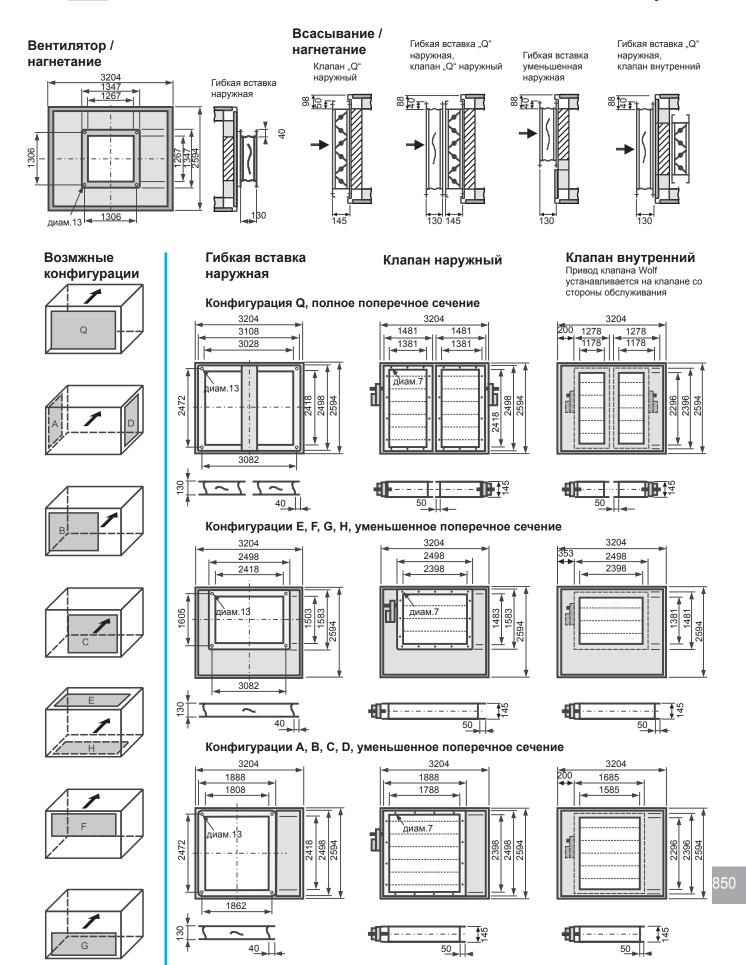
Другие рабочие значения по запросу


Падение давления воды (кПа)

Расход воды

$$W = \frac{0.86 \cdot \dot{Q}}{\Delta t_{w}} \quad (M^3/4)$$

 \dot{Q} = Мощность в кВт


$$\Delta t_{_{\!\!\mathsf{W}}}$$
 = $t_{_{\!\!\mathsf{WE}}}$ - $t_{_{\!\!\mathsf{WA}}}$

Возможные комбинации клапанов и гибких вставок

KG Top 850

Крутящий момент 1-го клапана согл. EN 1751 KL1: 17 Hм, согл. EN 1751 KL2: 19 Hм

Рекуперация тепла

KG Top 850

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

КGX Потоки воздуха горизонтально/ вертикально

KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно. Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

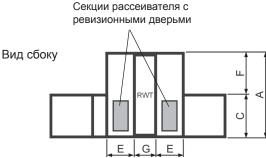
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

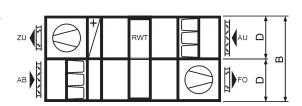
Технические данные по запросу

Описание RWT

RWT Потоки воздуха горизонтально/вертикально



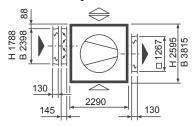
Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.


- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

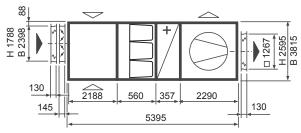
Технические данные по запросу

Размеры

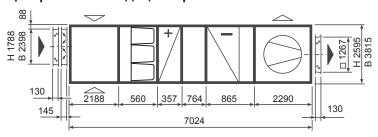
Вид сверху

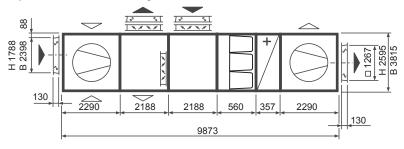


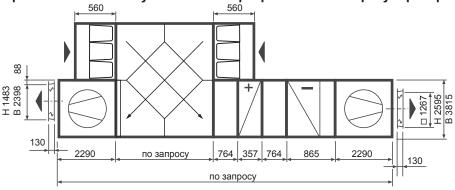
850

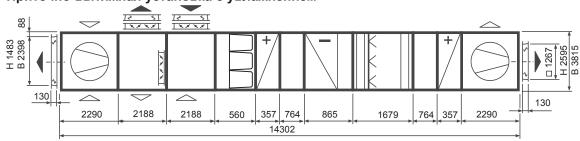


Центральный кондиционер KG Тор 1000

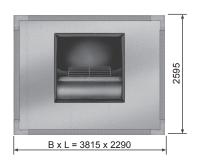

Вытяжная установка

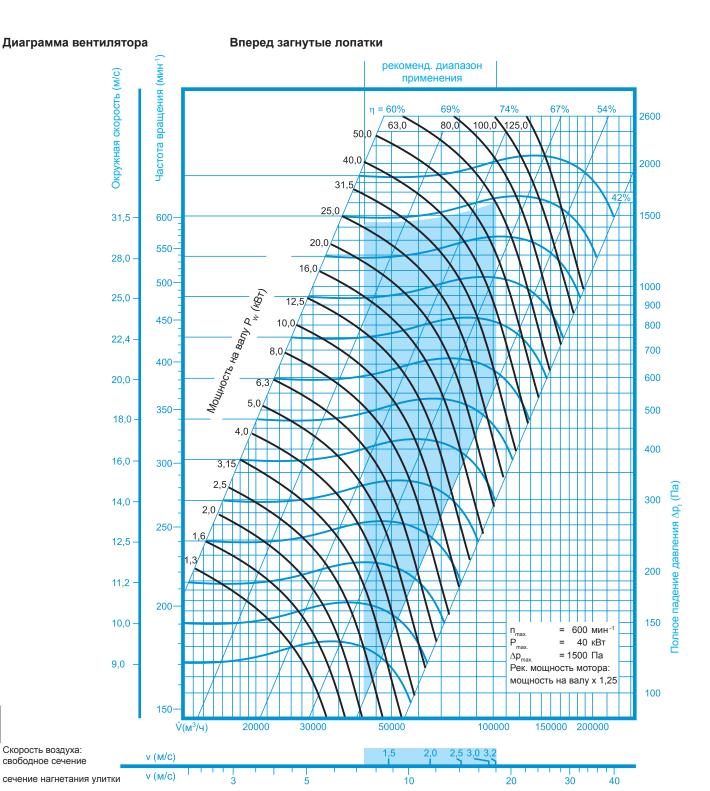

Приточная установка


Центральный кондиционер


Приточно-вытяжная установка

Приточно-вытяжная установка с перекрестноточным рекуператором




Приточно-вытяжная установка с увлажнением

Секция вентилятора

Секция вентилятора

Позиция нагнетания: А, В, С

Вентилятор/мотор: прочная рама на виброопорах, гибкое соединение между улиткой и облицовкой,

внутренний клапан не используется

Ревизионная дверь: слева, справа или сверху, снизу по запросу

Назад загнутые лопатки Диаграмма вентилятора рекоменд. диапазон применения η = 64% 63 80% 83% 80% 64% 45% 1200 75% 2200 /63,0\80,0 100,0 31,5/ 40,0 50,0 2000 1100 56 25,0 1800 1000 20,0 1500 50 16,0 900 45 12,5 800-1000 40 900 800 700-35,5 700 600 31,5 600 500 28 400 500-25 300 22,4 Толное падение давления ∆р, (Па 20 200 Частота вращения (мин⁻¹) 150 Окружная скорость (м/с) n_{max.} P_{max.} = 1150 мин 100 45 кВт = 2100 Па Δp_{max} Рек. мощность мотора: мощность на валу х 1,25 $\dot{V}(M^{3}/4)$ 15000 200000 20000

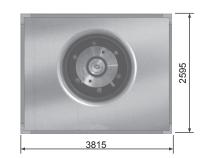
10

20

30

40

v (M/c)


Скорость воздуха:

свободное сечение

Прямоприводной вентилятор KG Top 1000

Свободный напор

давления

Внутреннее падение

Динамическое давление

Конкретный свободный напор определяется заказчиком.

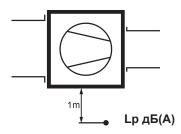
См. падение давления на каждой секции включая секцию вентилятора, зависит от расхода воздуха. Не требуется использования секции с диффузором для секций, расположенных по ходу воздуха после этого вентилятора т.к. выход воздуха осуществляется по всему сечению.

Не требуется учитывать динамическое давление для расчетов.

Технические данные по запросу

Шум

KG Top 1000

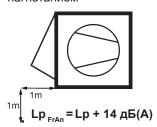

Полная звуковая мощность $\mathsf{L}_{\mathsf{w}}\,\,\mathsf{д}\mathsf{Б}$

Точные данные по шумовым характеристикам вентилятора могут быть получены только в заказной спецификации!

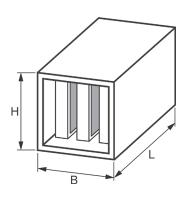
L_w [дБ] = вычисленная полная звуковая мощность со стороны всасывания/ нагнетания, излучаемая секцией вентилятора.

		Полное падение давления ∆р [Па]									
	L _w	500	750	1000	1250	1500	2000				
٦]	60.000	101	105	106	108	110	114				
[M ³ / ⁴]	85.000	103	107	109	111	113	115				
>	100.000	104	107	110	112	113	116				

Уровень звукового давления Lp дБ(A)



Lp дБ(A) = уровень звукового давления в 1 м от секции вентилятора, измеренный в свободном звуковом поле с подсоединенными воздуховодами на всасывании и нагнетании.


	Вперед загнутые лопатки											
Ÿ	n	Lp	٧	n	Lp	٧	n	Lp				
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)				
	250	55		280	61		315	65				
60.000	315	57	85.000	355	62	100.000	400	66				
	400	60	00.000	450	63		500	66				
	500	65		560	67		560	68				
			Назад за	агнутые л	попатки							
٧	n	Lp	Ů	n	Lp	V	n	Lp				
м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)	м ³ /ч	МИН ⁻¹	дБ(А)				
	630	57		800	61		1000	66				
60.000	800	63	85.000	900	65	100.000	1120	70				
	1000	69	00.000	1000	67	1 .00.000	-	-				
	1120	71		1120	70		-	-				

Уровень звукового давления Lp дБ(A)

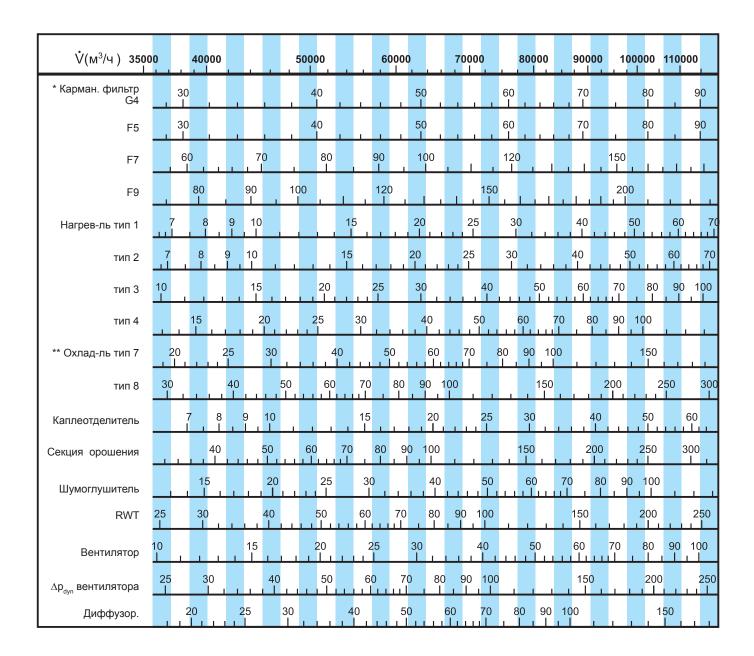
Со свободным всасыванием или нагнетанием

Секция шумоглушителя

Размеры (мм)

Высота Н	Ширина В	Длина L						
		Тип 11	Тип 12	Тип 13	Тип 14			
2595	3815	968	1171	1476	1679			

Погашение De дБ(А)


	Октавная полоса (Гц)									
Тур	63 125 250 500 1000 2000 4000 800									
11	4	8	18	20	23	17	14	14		
12	5	10	22	24	28	20	15	15		
13	8	14	29	31	36	25	17	17		
14	9	16	33	35	41	28	19	19		

Для 2 подсоединенных шумоглушителей $De = De_1 + De_2 - 3 дБ(A)$

Падение давления (Па)

* Расчет:

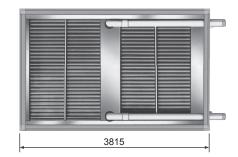
начальное пад. давл. + конечное пад давл.

2

Рек. конечное падение давления по EN 13779: Фильтр G4, F5, F7: 200 Па

F9 : 300 Па

Примечание: при скоростях в свободном сечении выше 2,0 м/с необходимо также учитывать падение давления на каплеотделителе.


^{**} Охладитель с осушением

Нагреватель

Теплообменник для горячей воды

Подсоединения: справа или слева

Ausrustung

Описание

Тип	Подсоединения	Объем
1	2"	2 х 28,4 л
2	3"	2 х 28,4 л
3	3"	2 х 42,6 л
4	4"	2 х 56,8 л

Максимальное рабочее давление 16 Бар Давление испытания 30 Бар

По запросу:

Нагреватель с медными трубками и защищенными от коррозии алюминиевыми ребрами

Нагреватель с медными трубками и ребрами

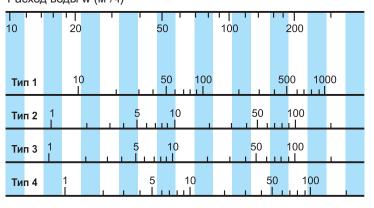
Стальной оцинкованный нагреватель

Паровой нагреватель

Нагреватель для горячего масла

Нагреватель с адаптерами для сливного клапана и воздушного вентиля

Примечание:


Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника.

Падение давления воды (кПа)

Pасход воды
$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_w}$$
 (м³/ч)

$$\dot{\mathbf{Q}}$$
 = мощность кВт $\Delta \mathbf{t}_{\mathrm{w}}$ = \mathbf{t}_{WE} - \mathbf{t}_{WA}

Расход воды w (м³/ч)

Секция охлаждения

KG Top 1000

Данные согласно VDI 3803, мин. межреберное расстояние 2,5 мм

Теплообменник для холодной воды

Подсоединения:

Справа или слева

Описание:

Теплообменник с медными трубками и алюминиевыми ребрами, медный коллектор

Каплеотделитель, отвод конденсата через дренажный патрубок, наружная резьба 1 1/4".

Секция охлаждения

L = 865

Тип	Подсоединен.	Объем
7	4"	2 х 95,7 л
8	4"	2 х 153,2 л

Максимальное рабочее давление 16 Бар

Давление испытания 30 Бар

По запросу:

Охладитель с медными трубками и защищенными от коррозии алюминиевыми ребрами.

Охладитель с медными трубками и медными ребрами.

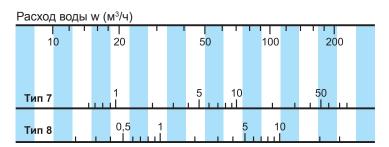
Охладитель с адаптерами для сливного клапана и воздушного вентиля

Примечание:

Размещайте установку таким образом, чтобы существовало достаточное пространство для извлечения теплообменника. Установки с отводом конденсата требуют установки сифона.

V (M/	/c)	1,5		2,0		2,5		3,0		3,2	
У (м	³/ 4)	48 000		64 000		80 000		96 000		102 000	
PKW	t _{∟E} °C	Q кВт	t _{∟A} °C	Q кВт	t _{LA} °C	Q кВт	t _{LA} °C	Q кВт	t _{∟A} °C	Q кВт	t _{∟A} °C
	Охладитель тип 7										
	32 529,8 9,4 665,9 10,6 789,8 11,7 904,2 12,5 947,7										
4/8	28	453,0	9,1	567,7	10,2	672,0	11,1	768,0	11,8	804,4	12,1
	26	404,5	8,7	506,9	9,7	600,0	10,5	685,7	11,2	718,2	11,4
	25	380,3	8,5	476,5	9,4	564,0	10,2	644,6	10,9	675,2	11,1
	32 28	487,1 410,1	10,6	610,8	11,8	723,4	12,7	827,2 690,9	13,6	866,6	13,9
5/10	26	361,4	10,3 9,9	512,5 451,5	11,3 10,8	605,5 533,3	12,2 11,6	608,5	12,9 12,2	723,4 637,0	13,1 12,4
	25	337,0	9,7	421,0	10,5	497,2	11,3	567,3	11,9	593,9	12,1
	32	443,0	11,7	554,3	12,8	655,5	13,7	748,6	14,5	784,0	14,8
6/12	28	365,6	11,4	455,7	12,4	537,4	13,2	612,4	13,8	640,8	14,1
	26	316,6	11,0	394,4	11,8	464,9	12,5	529,7	13,1	554,2	13,4
	25	292,1	10,4	363,8	11,6	428,7	12,2	488,3	12,8	510,9	13,0
	32	423,4	12,3	533,0	13,3	633,2	14,1	725,8	14,8	761,0	15,1
8/12	28	346,5	11,9	434,8	12,8	515,4	13,5	589,7	14,1	618,0	14,3
	26 25	297,1 272,4	11,5 11,0	373,0 342,0	12,2 12,0	442,2 405,5	12,9 12,6	506,1 464,1	13,4 13,0	530,4 486,4	13,6 13,2
	25	212,4	11,0	· ·	,	403,3 9ль тип		404,1	13,0	400,4	13,2
	32	614,5	5,9	793,6	6,5	962,3	7,1	1121,9	8,1	1183,4	8,4
	28	531,4	5,9	684,3	6,5	827,8	7,1	963,2	8,0	1015,3	8,2
4/8	26	475,1	5,8	611,5	6,3	739,6	6,8	860,4	7,2	906,9	7,9
	25	447,0	5,8	575,2	6,3	695,5	6,7	809,1	7,1	852,8	7,7
	32	570,6	7,3	734,8	7,9	889,2	8,5	1034,9	9,0	1091,0	9,5
5/10	28	486,6	7,3	624,6	7,9	753,4	8,4	874,9	8,8	921,7	9,0
0,10	26	429,8	7,2	551,2	7,7	664,7	8,2	771,6	8,6	812,8	8,7
	25	401,4	7,2	514,6	7,7	620,3	8,1	720,0	8,5	758,3	8,6
	32 28	524,0 439,1	8,8 8,8	673,0 561,4	9,4 9,3	812,6 675,8	9,9 9,8	944,3 783,3	10,3 10,2	994,9 824,5	10,5 10,3
6/12	26	381,5	8,7	487,4	9,3	586,3	9,6	679,2	9,9	714,9	10,3
	25	352,7	8,7	450,4	9,1	541,6	9,5	627,1	9,8	660,0	9,9
	32	488,7	9,8	631,4	10,3	766,0	10,7	893,6	11,0	942,9	11,2
0/42	28	404,9	9,8	521,5	10,2	631,2	10,5	734,9	10,8	774,9	11,0
8/12	26	347,5	9,7	447,4	10,0	541,5	10,4	630,4	10,6	664,7	10,7
	25	318,8	9,7	410,4	10,0	496,5	10,3	578,0	10,5	609,4	10,6

Параметры вход. воздуха: 32°С / 40 % отн.вл., 28°С / 47 % отн.вл. 26°С / 49 % отн.вл., 25°С / 50 %отн.вл.

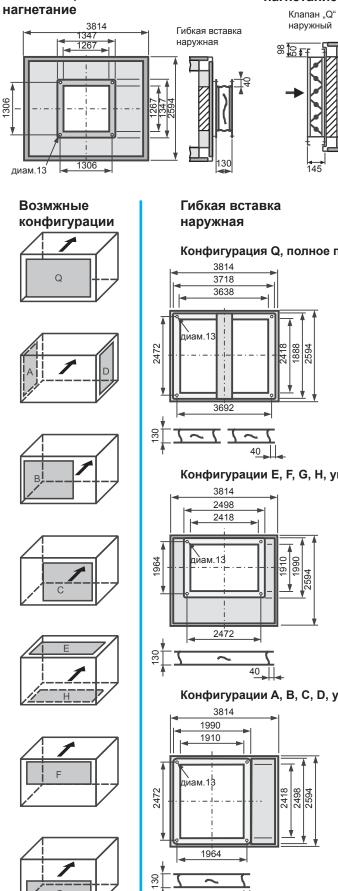

Другие рабочие значения по запросу

Падение давления воды (кПа)

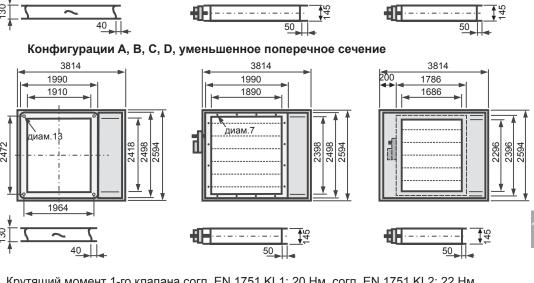
Расход воды

$$w = \frac{0.86 \cdot \dot{Q}}{\Delta t_{W}} \quad (M^{3}/4)$$

Q = Мощность в кВт $\Delta t_{_{\mathrm{W}}}$ = $t_{_{\mathrm{WE}}}$ - $t_{_{\mathrm{WA}}}$


184

1000



Возможные комбинации клапанов **KG Top 1000** и гибких вставок

Всасывание / Вентилятор / Гибкая вставка "Q" Гибкая вставка "Q" нагнетание Гибкая вставка наружная. наружная, нагнетание Клапан "Q" клапан "Q" наружный клапан внутренний уменьшенная 3814 наружный наружная Гибкая вставка наружная 1267

Крутящий момент 1-го клапана согл. EN 1751 KL1: 20 Hм, согл. EN 1751 KL2: 22 Hм

Рекуперация тепла

KG Top 1000

Точные данные по рекуперации тепла могут быть получены только в заказной спецификации!

Описание KGX/KGXD

KGX Потоки воздуха горизонтально/ вертикально KGXD Потоки воздуха диагонально

Потоки холодного и теплого воздуха направлены перекрестно.

Передача тепла осуществляется от теплого к холодному воздуху. Потоки воздуха полностью изолированы друг от друга алюминиевыми пластинами.

- Рекуперация тепла до 80 %
- Нет передачи влаги
- Нет движущихся частей, защита от коррозии

1 Корпус

Такой же как и для других секций установки.

2 Теплообменник

Поверхности теплообменника выполнены из специального коррозионностойкого алюминия.

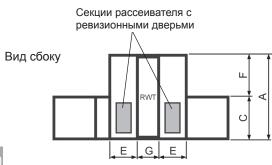
3 Внутренний байпас (по запросу)

Для избежания обледенения поверхностей рекуператора или для байпасирования в летнем режиме, весь или часть уличного воздуха пропускается через байпас минуя рекуператор.

Технические данные по запросу

Описание RWT

RWT Потоки воздуха горизонтально/вертикально

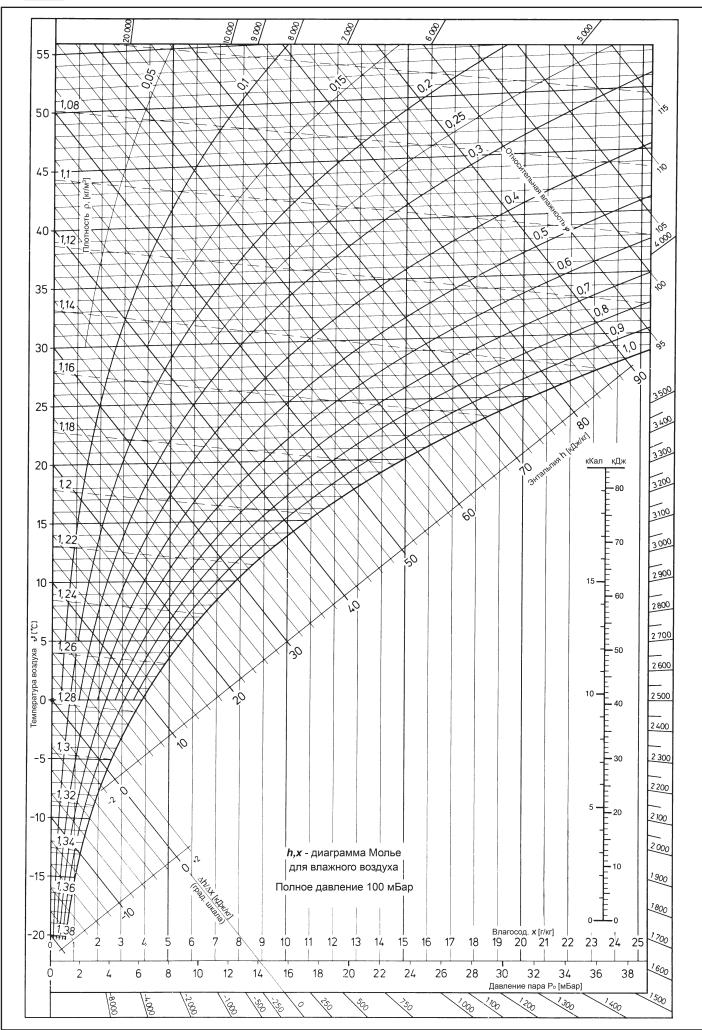


Вращающееся колесо рекуператора отбирает тепло вытяжного воздуха и передает приточному.


- Рекуперация тепла до 80 %.
- Простое регулирование мощности изменением частоты вращения.
- Возможно увлажнение приточного воздуха при помощи специального ротора
- Защита от замерзания, оттаивание, предварительный подогрев не требуется.
- Удобный доступ через ревизионные двери секций рассеивателя.
- Опционально возможна поставка энтальпийных и конденсационных роторов.

Технические данные по запросу

Размеры



Вид сверху

1000

Компания Wolf является производителем полного спектра климатического оборудования для коммерческих и промышленных сооружений, как строящихся, так и реконструирующихся. Системы управления Wolf удовлетворяют всем необходимым требованиям для поддержания климата. Все производимое оборудование удобно в использовании, надежно и удовлетворяет требованиям энергосбережения. Фотогальванические и солнечные системы могут быть установлены и интегрированы в существующую систему в кратчайшие сроки. Все оборудование производства Wolf удобно для монтажа и эксплуатации.

Wolf GmbH: 1380, 84048 Майнбург, тел.: 0 87 51 / 74-0, факс: 0 87 51 / 74-1600, www.wolf-klimatechnik.de www.wolf-klimat.ru

Пример системы: Отель

Система кондиционирования

- KGW Тор со встроенной холодильной машиной
- KGG гаражная вытяжная установка
- KGW Тор кухонная вытяжная установка
- KG Standart
- KG Standart, подвесная установка

Система отопления

- Газовый конденсационный котел MGK

Система вентиляции

- Тепловая завеса TL
- Фэнкойл KL
- Тепловентилятор LH
- Система управления DigiPro

Солнечная система

- Солнечны коллектор TopSon F3
- Бойлер тип 850

